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We analyze the ionization equilibrium between the charges in nonlinear bilayers formed by triangular 
planar atomic lattices. We consider a system consisting of two separated buy a dielectric medium and 
independently gated layers 1 and 2 separated by a dielectric medium with  with equal density of electrons 
in first layer 1 and holes in second layer 2. Assuming that the upper layer is doped with electrons and in the 
lower layer is doped with holes, we study of the formation, the dynamics and the thermodynamics of bound 
states. Beside electron – hole pairing we are including bound states with solitonic excitations. We 
investigate the ionization of electron – hole pairs and discuss the influence of solitons on bound 
electron-hole pairs; her we use the adiabatic approximation assuming at any time local equilibrium. So far 
we concentrated here on several thermodynamics and dynamic effects, as the Coulomb attraction between 
electrons and holes, the formation of electron – hole atoms and degeneration effect. Further we investigated 
the ionization equilibrium and the coupling to solitonic excitations.  
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1  Introduction 

Ionization problems are a classical topic of 
plasma physics [1, 2]. In recent time new problems 
have appeared in connection with plasmas in 
low-dimensional nanosystems [3, 4, 5], in particular 
with plasmas in bilayers [3]. The coupling of 
electrons injected into one layer to holes injected into 
a second layer has been studied already long ago [6, 
7, 8, 9] including the prediction of observing electron 
– hole pairs, which are rather stable bosons inluding
possible high – temperature electron – hole 
superfluidity and other interesting effects [3, 6, 8, 10, 
11]. We plan to study here related problems from the 
point of view of plasma physics including some 
problems related to the coupling of the charge 
dynamics to the lattice excitations in nonlinear 
lattices. An example is the interaction of acoustic 
lattice soliton excitations in 2d – lattices to imbedded 
electrons, and the effect of electron surfing [12, 13, 
14] including transport [13, 14, 15], and control
effects [15, 16]. The lattice excitations may have 
different origin such as thermal excitations or e.g. 
mechanical or electrical shocks generated by 

contacts of the tip of an electron field microscope 
with a suitable anharmonic crystal lattice layer. For 
example in simulations a few hundred atoms on a 
plane forming triangular [13] or hexagonal lattices 
[16] interacting with one or a few added, excess 
electrons were studied.  

Figure 1 – Schema of a bilayer located between two metal 
gates and with an insulating layer in between adapted after 
[3]. The layers have electric contacts and may be doped 
with electrons in the upper layer and with holes in the 

lower one. The electrical attracting forces are 
demonstrated by dashed lines between electrons and holes 

[3] 
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Here we want to study similar effects in bilayers, 
consisting of two lattice layers in small distance. The 
recent fabrication of two very close, but electrically 
isolated, conducting bilayer graphene sheets, one 
doped with electrons and the other with holes with 
tunable densities, raises exciting new possibilities 
[17, 18, 19]. 

We will discuss the following problems: 
1) electron and a hole are able to form a stable

localized pair already in unperturbed bilayer lattices. 
The pairs are like a Hydrogen atoms, which are near 
to classical pairs. Collaps is prevented due to 
existence of a minimal length given by the distance 
of the layers. 

2) The excitations of solitons in either of the lattices
may carry not only individual charges but also pairs. 

3) This leads to a variety of possibilities, among
them new "vacuum cleaner" effects, a soliton will 
trap an already localized electron-hole pair and we 
may control this way the motion of pairs. 

Let us consider now the forces and other physical 
effects in doped bilayers:  

We consider a system consisting of two separated 
buy a dielectric medium and independently gated 
layers 1 and 2 separated by a dielectric medium with 
� with equal density of electrons in first layer 1 and 
holes in second layer 2. Let us first discuss the 
physical effects to be expected. At large distances, 
the two layers are uncoupled and the state is expected 
to be similar to what we observed and described on 
one – layer systems [13, 14, 15, 16]. In the case that 
the two layers come closer together, the Coulombic 
forces between electrons and holes come into play 
and at small distances e-h pairing can occur due to 
Coulomb interaction. At lower densities we may 
neglect the Coulombic forces between the electrons 
in one layer and the holes in the other one. The forces 
are repulsive and try to keep the charges far from 
each other, therefore a close meeting of two equally 
charged particles is rather seldom.

Figure 2 – State of a bilayer: The upper layer is doped with electrons  
and the lower one with holes. The attracting Coulomb forces between electrons  

and holes lead to pairing effects. Thermal effects tend to destroy the pairing at mediate 
and higher temperatures 

We assume the following interaction between an 
electron in upper layer 1 and a hole in lower layer 2. 
For the electron – hole interaction we assume the true 
Coulomb potential  

�������� ���� ���� ���� �� = 

= − ��
����������)����������)����]���

.  (1) 

where � � � is an effective dielectric constant, � �
1��  is the distance between the layers and 
���� ���� ���� ���  are the respective coordinates in the 
upper layer 1 doped with electrons and the lower 
layer doped with holes 2 . We mention that this 
potential has been used in earlier work [20] Note that 
Efimkin et al. [9] and Conti et al. [11] use different 
formulae in Fourier representation for the description 
of the forces, e.g. we find in [11] the "ansatz"  

������ �′) = −2� ��������|���′|)
�|���′| .   (2) 

At low temperatures and small distances between 
the layers, bound states will be formed, due to the 
attracting Coulomb forces between electrons and 
holes. In particular we expect pairing effects which 
lead to a kind of excitons which are bosons [6]. 
Thermal effects will create ionization effects which 
destroy the pairing at mediate and higher 
temperatures. 

In our simulations we used for modeling the 
electron dynamics the tight-binding approximation 
(TBA) (which is entirely different from the tools 
used by Conti et al. [11]) and for the lattice particles 
we use her as in earlier work a classical Hamiltonian 
albeit with the Morse interactions. As a result of this 
mixed anharmonic classical-quantum TBA dynamics 
we could show that the charges “like" to follow the 
trajectories of soliton-like excitations. In the 1d case 
we have predicted several interesting phenomena, in 
particular the “vacuum-cleaner" effect, i.e., the 
electron probability density is gathered by solitons 
which along their trajectory act as long range 
correlators. 
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2  Interactions and solitonic excitations in 
bilayers 

We assume that effects connected with 
polarization and polaron effects are small. The atoms 
repel each other exponentially and attract each other 
with weak dispersion forces. The characteristic 
length determining equilibrium distance between the 
particles in the lattice is �  which is used as the 
length unit. Using the relative distance �� � |��� �
���|  for two atoms in layer with number �  we 
introduce the Morse potential: we set  

����� � 
� ���exp������� � ��� � �exp������ � ����. (3) 

By imposing the cutoff of the potential at �.��, 
we exclude unphysical cumulative interaction effects 
arising from the influence of lattice units outside the 
first neighborhood of each atom [13]. The lattice 
solitons along crystallographic axes in 2 coupled 
two-dimensional anharmonic crystal lattices are 
rather independent. 

For the electrons and holes we will use 
essentially the model described above. Just as an 
illustration we may show Figs. obtained earlier for 
one layer systems. In Figure 4 we show an 
unperturbed triangular lattice.  

Figure 3 – Triangular Morse lattice. The lattice sites in 
one layer are represented by small Gaussian clouds 

Solitons may be created for example by kicks at 
the border of the lattice. The soliton which is moving 
along a crystallographic axis can be excited by a 
strong pulse of velocity �� imposed at � � �. The 
high-energetic soliton excited this way is quite long 
lasting in its motion along the chosen 
crystallographic axis. Transverse excitations and 
thermal collisions do not play a significant role in the 
interval of observation.  

Figure 4 – Solitonlike excitation along a oedimensional 
crystallographic axis represented as a stripes showing 

position over time. We show only the lattice sites in one 
layer. by small Gaussian clouds 

Solitonic excitations may also be created by 
thermal collisions [13, 14]. Since solitons are local 
compressions of the lattice these clusters of atoms 
generate a potential hole in which charges density 
might be concentrated. Any displacement of the 
atoms changes the polarization energy. The charge 
density will try to follow up these changes. This is 
the basic effect leading to the effect of solectron 
formation [13, 14]. For the following discussion we 
have to notice that any soliton created in the lattice by 
mechanical or thermal effects, acts as an attractor for 
the charge density. 

Solitons and electrons may form solectrons, no 
doubt may be that the same may happen with holes 
leading to solitonic holes  solholes. So far we do not 
know much about the masses. Small masses are of 
large interest for BEC-effects 

The soliton as it travels disturbs the lattice. This 
is connected with the emission of phonons, this 
process occurs in the phonon band. Only after a finite 
time which is about 5 time units in our example the 
lattice returns to the ordered crystalline state. In the 
intermediate time the lattice is in a non-crystalline 
state and unable to allow solitons to cross the path. 
Any second soliton which will cross the trace of an 
soliton in the delay time will get stuck. We have 
shown how this effect may be used for control. 

The potential for the electron – hole interaction 
may be represented as  

�������, ���, ���, ���, �� � � ��

���������
,  (4) 

�� � �� � ��� ��������� � ���� � ����������� 
�� � ���� � ����   (5) 
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 Here is � the horizontal distance. 

Figure 5 – The potential of the effective horizontal force 
between electron and hole, including also the parabolic 

approximation which is valid only for small �� 

3  Modeling charge pairing and bound states 

For the quantum – mechanical treatment of 
electron – hole pairs, a parabolic approximation of 
the quite difficult interaction potential is useful. For 
small distances �  follows in quadratic 
approximation  

������ �� � � ��
������������ ≃

��
�� ��1 �

��
�����. ..

 The parabolic approximation corresponds to a 
two-dimensional oscillator with frequency   

��� � ��
���   (7) 

The classical value of the ground state energy of 
an electron – hole pair, which is a lower bound reads 
�����, and the quantum-mechanical bound states in  

this potential are in first approximation the known 
oscillator states   

������ � � ��
�� � ����� � �� � ���     (8) 

with the ground state 

���� � � ��
�� �

�
� ��  (9) 

The condition for the existence of discrete bound 
states is   

�� � � ��
��   (10) 

or expressed in other parameters 

�
� � � ����.  (11) 

As we see, the condition for the existence of 
discrete bound states, which we need, is that the 
distance between the layers is sufficiently small. In 
order to give an example we assume ��� and ��1 
nm, then we arrive at Bohr radii of about a few nm 
and ground state energies with an order of 
magnitude around 0.1 eV or maybe more generally 
binding energies in the range 10�� � 1 0 �� eV. A 
rule of thumb known from plasma physics is that 
interesting ionization phenomena are to be expected 
at temperatures in the region of ��0.1|�����| and 
this estimate leads in our case to temperatures 
around 100 K (or maybe more generally in the range 
10 K – 200 K. To be more precise, we need the 
exact data of the sample. Her we consider only 
the order of magnitude.

Figure  6 – Model of a bilayer at low temperatures with examples of pairing ("atoms","molecules"). 
The electrons in the upper layer and the holes in the lower layer are mostly paired  

and behave like excitons or � � atoms which are bosons.  
Further we showed also two less stable molecules (double pairs) consisting  

of two electrons and two holes which appear to be similar to ��-molecules and are also bosons 

The potential of the horizontal forces between 
electrons and holes is represented in Figure 5 
including the parabolic approximation. 

What we can say about the possibility to form a 
kind of molecules e-h-e-h. A classical estimate of the 
energy of two pairs in a line in distance � is   
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�������� � �2 ��
�� � �2 ��

�� � 2 ��
�������������    (12) 

As far as we can see, the additional term is for 
any � – value positive, i.e. the formation of double 
pairs as shown in Figure 6 is of no energetic 
advantage. The only possibility to get negative 
additional contributions is to introduce between the 
two layers materials with still lower dielectric 
constant or a vacuum. We will therefore ignore here 
the formation of molecules, since quantum 
effects can only  

increase the ground state energy. We mention also 
the early finding of Lozovik and Yudson [6] that 
excitons in 2�  repel each other what ensures the 
stability of an exciton gas against coalescence into 
biexcitons, droplets etc.. Lozovik and Yudson 
pointed out that this property, which is characteristic 
for the 2d case, makes transitions to a superfluid state 
possible. New in comparison to earlier studies is that 
we include the excitation of the quasiparticles 
solitons, being nonlinear compressions in the lattice 
(see Figure 7)

Figure 7 – Bilayer with electrons and holes including the excitation  
of solitons (here symbolized by green stars). These quasi-particles which are typical excitations  

in nonlinear lattices attract charges and may form bound states with them, being in upper layer the 
"solectrons" and in lower layer the "solholes" 

4  Adiabatic Schrödinger equation in the 
presence of solitons 

Let us assume that a soliton is passing an electron 
– hole pair and takes it with it. We may image that the
e – h – pair is surfing on the top of the solitonic 
excitation This is a process of high complexity which 
may however be simplified and reduced in adiabatic 
approximation to a tractable model. The idea of 
adiabatic approximation for solectron systems has 
been developed in [12]. Let us assume that the soliton 
generates just a moving potential in which the 
electron and the hole are moving. Following the 
model developed earlier [15]. This model is based on 
a continuous description which consists of two 
equations, one for the effective Schrödinger equation 
for the wave function � of the charges and the other 
one for the deformation density of the lattice. The 
effective Schrödinger equation for the charges 
���� �� reads in the one – dimensional case [15]   

������� �� � ��
�� ����� � ����� ������ �� � ��  (13) 

The nonlinearities in the electron-lattice coupling 
appear in quite symmetrical way in the coupling 
constant  

� � � � ��� 

The term ����� plays the role of an external 
potential in the Schrödinger equation. The 
compression density �  is to be found from the 
Boussinesq equation [15]   

��� � ����� � �������� � 
� �

�� ����� � ������ � �  (14) 

In our case we have two dimensions �� � and 
two charges interacting by by a potential �. Further 
the Boussinesq equation is to be replaced by the 
Kadomzev – Petviashvili equation or generalizations 
as given in [21]. A generalization is the following 
modified Boussinesq equation for solectrons which 
differs from the original one only by shifted 
coefficients   

����������
��� � ��� ��

��� �
��
��

��
��� ���� �� ��  (15) 

� ��
2

∂�
∂�� ���� �� �� � ������

∂�
∂�� �

���� �� �� � 

�� ��
���

���������
���′��′����′��′����  (16) 

We generalize also the Schrodinger equation for 
this case and assume   
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�ℏ��(��, ��, ��. ��) + ℏ�

��Δ�(��, ��, ��. ��) − 

− [���(�, �) − ��(�, �)]�(��, ��, ��. ��) = 0, (17) 

The adiabatic approximation is based on the 
following assumptions: 

(i) The center of the exciton (e – h – pair) and the 
center of the soliton are located at the same place. 

(ii) the exciton follows the moving soliton 
without delay. 

similar as known from standard quantum 
mechanics we may go now to traveling center of 
mass coordinated and relative coordinates �, � and 
get finally the Schrodinger equation   

�ℏ��(�, �, �) + ℏ�

�� ���� + ���� +

+ [��(�, �, �) − �(�, �)]�(�, �, �) = 0,    (18) 

The wave function amplitude �(�, �, �) may be 
considered as the limit of the amplitude of the 
coefficients ��(�) in the discrete description [15] . 
Note that the validity of the continuous 
approximation is restricted to small nonlinearities 
(small �, �, ��). In spite of these known limitations 
we will use here the continuous theory for analytical 
estimates, as far as other analytical estimates are not 
available. Solutions of special interest to us are the so 
– called lump solitons, they are like moving hills. A
special solution for the envelope of a lump-type 
soliton reads [21]:   

�(�, �, �) = ��
[����������(�����)�]

[����������(�����)�]�  (19) 

Note that this special solution depends only on 
one parameter, the soliton velocity �� . The 
compression density �(�, �, �)  is always positive 
around the center of the moving lump but has also 
negative parts at larger distance from the maximum. 
This is related to the property that the integral is zero 

� �����(�, �, �) = 0� �� = ��
� .  (20) 

In figure 7 we represented the envelope of a lump 
soliton at two subsequent time instants. Such lump 
solutions we have found also numerically for Morse 
lattices [15, 21] 

In parabolic approximation the density of a lump 
soliton may be represented as:  

�(�, �, �) = �� − �
� ���� − �

� ����     (21) 

This way we get for the total effective potential 
acting on a n electron – hole pair moving in the field 
of a soliton: 

���
��� = ���(�, �) − ��(�, �)�(��, ��, ��. ��) ≃ 

≃ ���(�, �) + �
� ����� + �

� �����  (22) 

Figure 8 – Solution of the KP equation showing a 
traveling lump soliton at three successive time instants 

5  Ionization equilibrium in bilayer plasmas 
and BEC condition 

In our bilayer system, due to the existing 
attractive and repulsive forces, we may find different 
species and quasi-species as e.g.: electron, holes, 
solitone, solectrons, solholes, excitons, biexcitons, 
quasimolecules, etc. 

At low densities the concentrations between 
different species are in chemical equilibrium. In the 
thermodynamic equilibrium we may describe the 
relations between the "elementary" particles / 
quasiparticles, the electrons, holes and solitons by 
mass action laws. Let us first describe the most 
important chemical equilibrium between electrons 
and holes. We will give a short derivation of the 
so-called Saha equation formalism for a binary 
Coulomb system with ��  positive charges (holes) 
and ��  negative charges (electrons) per cubic 
centimeter. The density of free e-h-atoms is denoted 
by ��. The total density of charges is � = �� + ��. 
In the following we will use the plasma notations, i.e. 
we call the negative charges "electrons" and the 
positive charges simply "holes". We assume in he 
spirit of the ideas of Planck and Nernst a chemical 
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equilibrium between electrons, holes and atoms [2, 
23]. 

�� + ℎ� � ��;        �� + �� = ��    (23) 

Here the �� = ��/ ���  (�  – free energy) are 
the chemical potentials for the corresponding 
species, for the e-h-atoms we assume for 
non-degenerated "atoms" in ground state which is 
most probably assumed:   

�� = ������� + �������� − ��,�    (24) 

and for the charges including an ideal Boltymann 
contribution and an excess part stemming from 
degeneration effects and the charge-charge 
interactions:   

�� = ���� + ���� + �������;  

 �� = ���� + ���� + �������.   (25) 

The ideal Boltzmann terms contain the chemical 
constants which were fiorst expressed by Planck’s 
constant in the pioneering work of Sackur and 
Tetrode:   

���� = +�����Λ�
�;    ���� = +�����Λ�

�; 

   Λ� = ℎ/�2������.    (26) 

From the condition of chemical equilibrium for 
the chemical potentials follows neglecting 
nonideality and nondegeneracy the so-called Saha 
formula:   

��
����

= �(�) = Λ� exp ����,�
��� � ;  Λ = Λ�Λ�

Λ�
.  (27) 

The length Λ�,Λ�  is the de Broglie- wave 
length of electrons/holes having thermal momentum, 
��, ��  are the densities of free electrons and free 
holes. Free electrons are formed in chemical 
equilibrium with bound electrons and Planck’s 
theory is applicable. The theory depends crucially on 
the ground state energy ��,�. In the general case, the 
excited states have to be taken into account through 
the Planck-Brillouin-Larkin partition function and 
degeneracy and cahrge interaction throug standard 
approximations [2, 23]. Assuming as previously 
��1 nm and ��2 − 10, we arrive at bound state 
energies with an order of magnitude around 0.1 eV 
and find that the densities of the valley are located at 

� � 10������ corresponding to weak doping and 
� � 10������ corresponding to strong doping . We 
show the estimates for different temperatures in the 
region between 0.3 ⋅ 200 K and 0.8 ⋅ 200 K . In the 
region of low densities we observe temperature 
ionization and in the region of high densities we 
observe density ionization which is mainly due to the 
lack of space for exciton formation. Taking into 
account that an exciton, which is in principle like an 
hydrogen atom needs a space of at least ��∗� to form 
bound state wave functions. Remember that the Bohr 
radius in a dielectric medium ( � ∗  – effective 
relative mass of e-h pairs)   

��∗ = � ℏ�

�∗��   (28) 

(� ∗ – effective relative mass of e-h pairs). This 
may leaad to typical Bohr radii around 10�� − 10�� 
cm and therefore to maximal densities for the 
existence of excitons around 10�� − 10������. It 
follows, that certain limit densities, which are 
typically around a doping of 10�� − 10������ 
electrons and holes in the layers cannot be exceeded. 

The interesting result is, that bosonic effects 
connected with excitons are to be expected only in a 
valley of intermediate densities and the bosonic 
region is rather narrow at higher temperatures.  

Figure 9 – Ionization equilibrium in bilayers in the region 
around 160 K (curve above) and 60 K (curve below) 

showing the region of electron-hole pairing. The electrons 
in the upper layer and the holes in the lower layer are 

within the valley mostly paired and behave like excitons. 
The valley of densities where the excitons are formed is 
shown which is located usually between � � 10������ 

and � � 10������ is shown in our example for a 
temperature region between 60 K and 160 K.  

In principle we may expect also the formation of 
pairing of solectrons and solholes leading to 
molecule – like structures (biexcitons), however this 
is energetically not of any advantage [6]. For the 
region of lower temperatures where the particles may 
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be degenerated, the situation is more complicated 
and may be in some respect similar to electron – hole 
systems in semiconductors [6, 8, 22, 23] and in 
plasmas [2]  

Figure 10 – The region of electron – hole pairs in the 
density – temperature plane. Formation of pairs (excitons) 

is expected inside the area formed by the green line, 
denoting temperatures where temperature ionization 

begins and the red line giving the high densities where the 
excitons are destroyed due to lack of space for forming 

bound state wave functions. The temperature is measured 
in units of the e-h- ground state energy ���������. 

Including Coulomb interactions and all 
degeneracy effects, the generalization of the Saha 
equation reads [2]   

��
����

= Λ����������������� � ���� � ����]].   (29) 

where �����  denotes the excitonic partition 
function to be calculated using the exciton bound 
state energies  

�� = ∑����� �����������].   (30) 

The excess chemical potentials describe the 
Coulomb interaction and degeneracy effects The 
most important open question is in this connection, 
whether the densities of excitons provided by the 
chemical equilibrium are high enough to allow 
degeneration and BEC effects. The problem has been 
studied among others by Mahler and Kilimann for 
the exciton formation in semiconductors (see e.e [22, 
23]). As well known, in the region of BEC holds for 
the Bose gas   

����� = 0   (31) 

In combination with the condition of ionization 
equilibrium   

�� � �� = ������� � ����� � ����  (32) 

We find as a first estimate for the existence of 
BEC effects similar as for semiconductors [22, 23] 
the condition   

�� � �� � ���� = 0   (33) 

6  Adiabatic approximations for solitonic 
excitations 

So far we studied mostly systems in 
thermodynamic equilibrium assuming a continuous 
background. In some earlier works we studied the 
interaction of acoustic lattice soliton excitations in 2d 
– lattices to imbedded electrons, and found a form of
electron surfing [12, 13, 14] including transport 
effects [15]. In particular we discussed applications 
to control effects [16]. Briefly speaking, the charges 
may be transported by lattice excitations. Since the 
dynamics of electrons and holes is much faster that 
the lattice dynamics, adiabatic approximations may 
be quite useful assuming that the charges follow 
instantaneously the mesoscopic changes in the 
lattice, as soliton excitations, breathers etc. 

The adiabatic approximations which we 
developed in our work since 2009 [12] is a very 
simple tool to estimate the effects of thermal motion 
including the compression effects on polaron- and 
solectron – formation. The idea is quite simple. In the 
first approximation which is correct for fast electron 
dynamics in comparison to lattice dynamics, the 
local charge occupation of a lattice point n is given 
by a Boltzmann, Fermi- or Bose distribution based on 
the adiabatic quantum states. At small densities we 
may use the Boltzmann distribution   

�� = �������������]    (34) 

Here the �������� are the local eigenvalues of 
the Hamilton matrix, which in adiabatic 
approximations are assumed to be a function of all 
coordinates of sites in the lattice. Following 
Gershgorins theorem, as shown in [12] what matters 
are only the the elements in some circle (the 
Gershgorin circle). In our case we need the positions 
inside some physical distance, say �.������ from 
given lattice point �. In a reasonable approximation 
the local  eigenvalue is given by the mean  
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compression near to the lattice site �. Still easier is 
the description in the continuous approximation 
described above, at least restricting the studies to the 
parabolic approximation. In the continuous 
approximation the distribution in space is given by 
the adiabatic wave functions   

����� �� �� � ����� ∑� ��������������� ���� (35) 

However the levels and the wave functions are 
fully known only in the parabolic approximation, 
which howver gives at least a qualitative picture. 
What we need at the end are only the local 
compression which have to be calculated 
appropriately. An preliminary example calculated 
earlier for a one layer system is shown in figure 11. 
More precise calculations of the running 
compressions and the corresponding charge densities 
in two – layer systems are still to be done.  

We studied here bilayers, consisting of two 
lattice layers in small distance. The coupling of 
electrons injected into one layer to holes injected into 
a second layer leads to the formation of electron-hole 
pairs which are bosons. Since the dynamics of 
electrons and holes is much faster that the lattice 
dynamics, we used adiabatic approximations. The 
idea is to assume that the charges follow 
instantaneously the mesoscopic changes in the 
lattice, as soliton excitations, breathers etc. The tool 
of adiabatic approximations has been developed in 
several of our works [12]. It is the appropriate and 
sufficiently simple tool to estimate the effects of 
thermal motion including the compression effects on 
polaron- and solectron – formation. This first 
approximation is correct if the electron dynamics is 
fast in comparison to lattice dynamics. Then the local 
charge occupation of a lattice point is given 
approximately by a Boltzmann, Fermi- or Bose 
distribution based on the adiabatic quantum states. 

Figure 11 – Adiabatic approximation for the charge 
distribution in a heated system at � � ���� taken from a 
preliminary calculation given in [12], with several locally 

percolating regions of high charge density. 

7  Conclusions 

So far we concentrated here on several 
thermodynamics and dynamic effects, as the 
Coulomb attraction between electrons and holes, the 
formation of electron – hole atoms and degeneration 
effect. Further we investigated the ionization 
equilibrium and the coupling to solitonic 
excitations. 

Still to be studied are details on the control of the 
dynamics of pairs extending [16], transport 
phenomena extending [15], formation of bosonic 
electron – hole atoms at higher densities and, 
possible BE-condensation of e-h-atoms at very low 
temperatures/high densities [11, 3] . 
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