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To consider the interactions between light nuclei, as well as the nature of the nuclear forces between them, 
and the test was made of the coupled and resonant positions of the nucleus Li using the technique of the 
"Algebraic version of the resonant group method (AV RGM)", which takes into account the Pauli principle, 
and the cluster approximation. As a result, the nucleus Li was considered as a bound and resonant position 
formed by the interaction of two clusters. This approach can greatly facilitate the ongoing calculations, 
reducing the interaction between the set of nucleons, to the interaction of individual clusters. That’s way; 
the calculations carried out are an example of the applicability of this technique for studying interactions 
between light nuclei in the low-energy region up to 10 MeV. Also, special attention has the influence of 
nuclear forces, which are used for the description different nucleon-nucleon potentials. Consideration of 
the interaction between two clusters using alternately several different nucleon-nucleon potentials will 
allow us to better understand and determine the nature of nuclear force, which will be manifested through 
the obtained parameters of the bound and resonance positions, as well as the type of the built-up phase 
shifts. All calculations were performed using different values of nuclear parameters and quantum 
numbers. 
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  1 Introduction 

  The isotope of the nucleus Li��  refers to even-
odd light nuclei, which are often used as a visual and 
effective representation of these nuclei as cluster 
systems [1, 2, 3, 4] for the purpose of testing and 
conducting methods for calculating the properties of 
these nuclei by modern computational programs. 

Corresponding calculations were carried out 
taking into account cluster representations and 
microscopic methods [5] of the group of nuclei. 
Earlier, the characteristics of the nuclei were 
researched: 2He5, 3Li5 and Li��  [6]. The results 
obtained were in agreement with earlier experimental 
data [7]. Moreover, a description was given of the 
processes associated with interactions of clusters 
inside the nucleus, and the interaction of nucleons 
with these clusters, as well as the interaction of 
incident particles on the cluster core [8].  

When considering the states and structure of the 
nucleus Li�� , the interaction forces between cluster 
components and nucleons inside a given nucleus are 
of particular importance, taking into account the 
values of their quantum numbers: rear s, orbital 
angular momentum L, parity π and angular 
momentum J. Taking into account the peculiarities of 
the interactions between nucleons and clusters, three 
kinds of nucleon-cluster potentials were used in the 
proposed work: modified Hasegawa-Nagata [9, 10], 
potential Volkov’s V2 [11] and potential of 
Minnesota [12]. Each of these potentials has its own 
peculiarities; in particular, the first of them takes into 
account the model three-component interaction of an 
alpha particle with a deuteron, including Coulomb, 
centrifugal and spin-orbital forces between these 
clusters, Volkov’s potential takes into account the 
two-component interaction of clusters, and the 
Minnesota potential is based on three potentials of the 
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Gaussian type. Into these potentials are included the 
values of exchange waves for a more accurate 
description of nuclear interactions between nucleons 
and clusters.     

Note that the "algebraic version of the method of 
resonant groups" (AV RGM) [13, 14, 15], first 
proposed by G. F. Filippov, proved like very 
effective and has been widely used in studies of the 
properties of various cluster structures.  

This method was used by us in this work, and 
became the basis for the calculation programs used 
by us. Such a calculation technique, called 
"2cl_SpectrPhases.exe", was further improved by 
Vasilevskiy V.S. – one of the co-authors of this work 
[13, 14]. In this way, AV RGM is now one of the 
widely used methods for calculating microscopic 
states in cluster models. In particular, the nucleus Li��  
was considered as the state of the interacting clusters 
α and d: 

α + d → Li�� * →α + d          (1) 

Such a representation allows us to consider 
instead of a large number of nucleons involved in 
the reaction only two compact clusters. In this 

way, problems with a large number of interacting 
nucleons can be reduced to the problem of two or 
three bodies, which in many respects simplifies 
the scheme of calculating the computing time of 
computer systems without losing sufficient 
accuracy of calculations.  

This method was used for numerical calculations 
of the reactions using the calculation program 
proposed here, which makes it possible to investigate 
in detail the amplitudes and phases of the scattering 
of reactions, such as reactions (1). The obtained data 
showed good consent with the experimental values 
[7]. All calculations were carried out in the low-
energy range from 0 to 10 MeV, in the program 
"2cl_SpectrPhases.exe" programmed to calculate the 
reactions involving light nuclei.  

2 Principal 

The considered elastic scattering reactions (1) 
with the participation of two clusters and the 
formation of the nucleus Li��  were performed in the 
program "2cl_SpectrPhases.exe" for given initial 
parameters, indicating the type of interacting clusters 
(Table 1).

Table 1 – Types of clusters considered by the program "2cl_SpectrPhases.exe" for two cluster reactions 

Clu_name_1 He��  He��  He�� He�� He�� He��  He��

Clu_name_2 n p 2n d t He��  He��

Assuming reactions, the program always takes 
the first particle cluster α, using as an incident 
cluster the particles indicated in the tables under 
the group: Clu_name_2, in particular, in the 

framework of this work, an incident particle 
chooses to be deuterium d. 

Then, quantum numbers of interacting clusters 
are inputs, which are install parameters (Table 2). 

Table 2 – Nucleus and basic input parameters 

Nucleus He��  Li��  He��  Li��  Li��  Be��  Be��  
Na 5 5 6 6 7 7 8

tot_spin 0.5 0.5 0 1 0.5 0.5 0

In addition to the install parameters showed in 
Table 2, in configuration file "2cl_calc_spec.cfg", 
sets the parameters: 

 lm – orbital angular momentum
 tot_mom – total angular momentum of the

system; 

 �� – oscillator length;
 majoran – Majorana parameter, which sets

by a definite value for each of the potentials in this 
work. In this case, the modified Hasegawa-Nagata 
potential equal to – 0.0009. The Majorana parameter 
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chooses to reproduce the experimental value of the 
ground-state energy of the nucleus; 

 n_ob_funs –   parameter that established the
number of basic functions which the wave function 
of the relative motion of clusters. Calculations were 
conducted by 200 basic functions; 

 npot – parameter responsible for the selection
of the nucleon-nucleon potential, which will be used 
in the calculations (Table 3). Their classification is 
embedded in the program, where each of the 
potentials was marked with its number. At the work 
used: modified Hasegawa-Nagata potential (npot = 
1), Volkov’s potential В2 (npot = 3) and the potential 
of Minnesota (npot = 6); 

Table 3 – Classification of nucleon-nucleon potentials [4] 

npot Name of potentials 
1 Modified Hasegawa-Nagata potential [10]
2 Volkov’s potential V1 [11]
3 Volkov’s potential V2 [11]
4 Brink-Boker potential В1
5 Brink-Boker potential В2
6 potential of Minnesota [12]

 E_ini, E_fin – parameters that determine the
energy interval in which the phases and scattering 
cross sections will be calculated. The parameter E_ini 
specifies initial energy, E_fin sets the final energy. In 
this work the scattering reaction is α + d will be 
considered in the energy range from 0 to 10 MeV. In 
this connection, the parameters will have values: for 
start energy E_ini = 0, for final energy E_fin = 10 
MeV; 

After entering all the install parameters for 
reactions (1). Program start to calculation which task 
is: calculation of the Hamiltonian of two cluster 
systemsH�, and phase-scattering related, also resonant 
positions. As a result, the wave function describing 
the positions of two clusters and their interactions 
with each other will be represented in the form [13, 
14]: 

Ψ� = ��{���(��)��(��)]����� (��)},          (2) 

where �� this is an operator of the antisymmetrization 
– indistinguishability system from A nucleons by
permutations of all nucleon pairs 

�� = ∑ ���������� ,              (3) 

���  – an operator that performs a permutation on 
A nucleons, �� – the sum of all permutations in A of 
the particles, �� = ±1 – the sign of this permutation, 
where +1 – for an even permutation, -1 – for an odd 
permutation.  

��(��) – internal wave function of nucleons(��) 
in first α – cluster, dependent on the coordinates of 
the first four of nucleons – ������, ������, ������, ������. 

��(��) – internal wave function of nucleons (��) 
in the second d-cluster, which depends on the 
coordinates of the second part of the nucleons – ������,������. 

���� (��) – the wave function of the relative motion
of two clusters, in this work the alpha deuterium, 
which depends on the Jacobi vector.  

�� – the Jacobi vector, which is proportional to the 
vector �� [8, 13, 14, 15] 

 �� = ��� ����
�����

 ,         (4) 

where �� – determines the relative distance between 
the centers of mass of interacting clusters [8, 13, 14]. 

   ��= � ��� ∑ ��� − �
��
∑ ����������� �,       (5) 

where ��� – it’s coordinate of i nucleons (i = 1, 2, 3, 
…, ��) from first cluster, and ��� – it’s coordinate j 
nucleons (j = ��+1, ��+2,…, �� � ��) from second 
cluster. 

Internal wave functions ��(��) and ��(��), 
describing the motion of nucleons within both 
clusters, within the framework of the cluster 
approximation and the microscopic method of AV 
RGM, must be fixed, and constructed in the form of 
Slater determinants from the oscillator functions of 
the translationally invariant shell model [15, 16]. As 
a result, the functions ��(��) and ��(��) depend 
from oscillator length of ��, inputted with install 
parameters. 

Carrying out calculations using AV RGM, the 
wave function of the relative motion of the clusters 
���� (�) can be reduced to a simple algebraic form, 
using for this purpose the expansion of the 
intercluster function with respect to the complete set 
of ��(�� ��) of normalized radial oscillator functions 
in the coordinate and momentum spaces [13]. 

    ���� (�) = ∑ С������ ���(�� ��),             (6) 

���� (p) = ∑ С������ ���(p� ��).             (7) 
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where � – vector modul �� [13], 

���(�� ��) = (−1)������
�
������

��
� �������(�)�,  (8) 

  � = ���,      �� = � ���(����)
��(���������)

 , 

   ���(р, ��) = ����
�
������

��
� �������(�)�,      (8.5) 

� = р ∙ ��, 

where n – number of oscillator quanta (knots),�� – 
oscillator radius, G – known gamma function [17], 
������� – generalized Laguerre polynomial [18], С��
– Fourier coefficients.

After that, the recording of formula (2) of the 
total wave function of two cluster systems in the 
algebraic version of the method of resonant groups 
takes the form of a generalized Fourier series [13, 16, 
19] 

  Ψ� = ∑ С������ Ψ��,          (9) 
where 

   Ψ�� = ��{[��(��)��(��)]����(�� ��)},     (10) 

Ψ�� – This is the basis of many-particle oscillator 
functions, which is used to describe this cluster 
system of light nuclei. 

Due to the presence of correct boundary 
conditions, this method is well used for describing 
the position of both continuous and discrete spectra. 
A feature of the AV RGM is the reduction of the 
problem of finding the wave function of the relative 
motion of clusters ���� (��) to the problem of finding 
the unknown coefficients of the Fourier expansion 
С��[11]. What is the wave function of the relative 
motion of two clusters in a discrete oscillator 
representation, satisfying a system of linear algebraic 
equations [19, 20] 

∑ [〈Ψ������Ψ��〉����  – E ∙ 〈Ψ��|Ψ��〉]С�� = 0, (11)

where 〈Ψ������Ψ��〉 are the matrix elements of the 
Hamiltonian between the cluster oscillator functions. 
Dirac brackets mean integration over spatial 
coordinates and summation over spin and isospin 
variables of all nucleons. 〈Ψ��|Ψ��〉 – the 
normalization of nucleus or the overlap integral of the 
oscillator functions (10) [19, 20] 

〈Ψ��|Ψ��〉 = ������,           (12) 

where �� – eigenvalues of the antisymmetrization 
operator. At �� = 0 position Ψ� is a prohibited 
position of Pauli. Such positions do not participate in 
the construction of the wave function (2) and do not 
describe the dynamics of two cluster systems. For 
this, positions only allowed Pauli principle are used, 
for which �� > 0. 

Then, in carrying out the renormalization of the 
basis functions and the Fourier coefficients due to the 
influence of the antisymmetrization operator ��, the 
equation (11) was reduced to the standard matrix 
form of the Schrödinger equation with an 
orthonormal basis of the function. Because of this, 
has obtained endless system of linear homogeneous 
algebraic equations of the form [13, 20, 21] 

   ∑ [�����������������  – E ∙ ����]С��� = 0,     (13)

where Н� – multi particle nuclear Hamiltonian, Е – 
total energy of the nuclear system, ������������� – 
matrix elements of the Hamiltonian on functions 
Ψ��, n and m – indexes that numbers only positions 
accepted by Pauli principle. 

By this, the problem of solving the wave function 
of interacting clusters reduces to the matrix problem 
of the expansion of the inter cluster wave function 
over the complete system of oscillator functions, 
where the eigenvalues and eigenfunctions of the 
Hamiltonian. Negative eigenvalues determine the 
energy of bound positions��, and the corresponding 
eigenfunctions determine the wave functions of the 
bound positions of Ψ� nucleus.   

The positive eigenvalues and eigenfunctions 
represent the state of the continuous spectrum of the 
nucleus.
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Figure 1 – The phase shifts for elastic scattering d + α constructed using 
the modified Hasegawa-Nagata potential 

The phase shifts shown in Figure 1 were 
constructed using the modified Hasegawa-Nagata 
potential. 

In the graph above (Figure 1), the built-up phase 
shifts showed the presence of bound positions for the 
values L = 0 and L = 1 through channels with values 
Jπ = 0+ , 1+ , 2+ that they were marked with red and 
green lines. As the orbital angular momentum 
increases till L = 2 for channels with value of Jπ = 0+ 
, 1+ , 2+ there appeared resonance positions marked 
with black lines. The presence of these resonance 
positions indicated an increase in the influence of the 
centrifugal barrier in the inter particle interaction and 
its role in the formation of resonance positions. Also, 
using the modified Hasegawa-Nagata potential, 
which takes into account not only the centrally 
nuclear but also the spin-orbit component, it is 
possible to analyze the effects of the spin component 
on the resonances formed and their lifetime. For what 
was taken into account the ratio of resonance energy 

to its width and lifetime: E= Г� = ħ�� , �= ħГ ; where E – 
resonance energy, G – width of resonance, τ – 
lifetime of resonance. 

The existence times of these resonance positions 
were determined. As a result, resonances for the 
values analyzed for Jπ = 1+ , 2+ , 3+ showed an 
increase in the lifetime of the resonance with respect 
to the increasing value of its spin-orbit component. 
So it was calculated that the lifetime τ for the 
resonance with the value of Jπ = 3+ form � = 3.43562 
⨯ 10���s. which was two orders of magnitude higher 
than the lifetime for the resonance with the value of 
Jπ = 1+ constituting � = 2.792579 ⨯ 10���s. and � = 
6.49688 ⨯ 10���s. for Jπ = 2+ respectively. These 
values, like the phase shifts in Figure 1, showed the 
dependence of the resonance states and their 
parameters on the available quantum numbers.  

Figure 2 shows the obtained phase shifts using 
the Volkov’s potential B2.
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Figure 2 – The phase shifts for elastic scattering d + α constructed using 
the Volkov’s potential V2 
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Figure 3 – The phase shifts for elastic scattering d + α constructed using 
the Minnesota potential 

In Figure 3, the phase shifts were obtained using 
the Minnesota potential. 

  3 Results 

In the result of calculations for the scattering of 
light nuclei α + d with the formation of bound and 
resonance positions in the form of a compound 
nucleus 6Lі, data were obtained describing these 

positions and the conditions for their appearance. All 
calculations were made at low energies from 0 to 10 
MeV, using nucleon-nucleon potentials: Hasegawa-
Nagata (modified) [10], Volkov’s V2 [11] and 
Minnesota [12], each of which had its own exchange 
parameters and characteristics, which were clearly 
expressed in the results obtained. Due to this, the 
phases of scattering of bound and resonance positions 
were constructed, presented in Figures 1 – 3. The 
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scattering phase data calculated for elastic scattering 
of α + d with different values: of total orbital angular 
momentum L, total angular momentum J and 
definition π, which showed significant differences in 
the formed positions. What indicated the influence: 
Coulomb and centrifugal barriers on the lifetime of 
three formed resonance positions: Jπ= 3+, Jπ= 2+ and 
Jπ= 1+ at L = 2. Received scattering phases as well as 
the scattering phases constructed on the using of 
modified Hasegawa-Nagata potential showed the 
presence of resonant positions in the range of L = 2. 
However, the scattering phases obtained by using the 
Volkov’s potential V2 shown in Figure 2 featured 
significant differences from our previous results 
obtained by using the Hasegawa-Nagata potential. It 
is important that in the case of the Volkov’s potential 
there are no phase shifts in the resonances that were 
manifested in the case of the Hasegawa-Nagata 
potential. But in the case of the Volkov’s potential, it 
turns out that the resonance generation energy for the 
positions with Jπ = 1+, 2+, 3+ is the same and equal 
to ����� = 2.567 MeV. 

Such differences can be a consequence of the 
peculiarities of Volkov’s' potential V2, which 

consists of two Gaussian functions and does not 
describe the interactions associated with the change 
in the spin and isospin parameters. In this regard, the 
graph presented in Figure 2 does not show changes in 
the scattering phases, which could be related to the 
influence of the spin component on them. 

The Minnesota potential (Figure 3), like the 
modified Hasegawa-Nagata potential, takes into 
account the spin-orbit interaction, which is 
determined by three Gaussian functions. However, 
using the Minnesota potential to solve the problems 
posed and for construct the scattering phases 
obtained with it, the results doesn’t showed the 
presence of resonant positions, but in this case they 
yielded results only for bound positions. The 
associated positions described by the Minnesota 
potential gave good consent with the results obtained 
using the modified Hasegawa-Nagata potential. 

All values of the parameters of bound and 
resonant positions for different values of L and �� 
were obtained by using various nucleon-nucleon 
potentials that were compared and were in consent 
with   the   experimental   data.   Results   showed  at 
Table 4.

Table 4 – Experimental and theoretical values of the parameters of bound and resonant positions using different nucleon-
nucleon potentials 

Potential L; �� �����(MeV) �����(MeV) G(MeV) 
Modified Hasegawa-Nagata 
potential 

0; 1� 
1; 0� 
1; 1� 
1; 2� 
2; 1� 
2; 2� 
2; 3� 

-1.432517 
0.443289 
0.443270 
0.443229 
0.607098 
0.606985 
0.601944 

- 
- 
- 
- 

4.1 
3.063 
0.763 

- 
- 
- 
- 

2.356595 
1.013097 
0.019158 

Volkov’s's potential V2 0; 1� 
1; 0� 
1; 1� 
1; 2� 
2; 1� 
2; 2� 
2; 3� 

-0.886018 
0.403692 
0.403692 
0.403692 
0.543601 
0.543601 
0.543601 

- 
- 
- 
- 

2.567 
2.567 
2.567 

- 
- 
- 
- 

0.900432 
0.900432 
0.900432 

Minnesota potential 0; 1� 
1; 0� 
1; 1� 
1; 2� 
2; 1� 
2; 2� 
2; 3� 

0.348620 
0.464726 
0.464722 
0.464715 
0.640570 
0.640567 
0.640564 

- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 

Experimental values [7] 0; 1� 
2; 2� 
2; 3� 

-1.4743 
- 
- 

- 
2.838 ±22 
0.712 ±2 

- 
1.30 ± 100 
0.024 ± 2 
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4 Conclusion 

Calculations of the investigation of bound and 
resonance positions of the 6Lі nucleus by using the 
program "2cl_SpectrPhases.exe" showed the 
dependence of the resonant positions on the 
centrifugal and spin-orbit components. This 
dependence is particularly important in phase shifts 
and lifetimes of resonances with different quantum 
numbers. The presence of exchange parameters in the 
calculations and using of three nucleon-nucleon 
potentials made it possible to obtain the 
characteristics of connected and resonant positions.  

It was obtained the magnitude of the exchange 
forces on the parameters of each of the potentials, 
calculated shifts of the scattering phases and an 

analysis of their dependences on the magnitude of the 
exchange forces. Thereby, was determined the 
potential of each components in the description of the 
formation of bound and resonant positions in the low-
energy range. 

Dispersion phases, formed as a result of work and 
the main characteristics of resonance states, obtained 
from calculations and formed in the field of low 
energy from 0 to 10 MeV, have given an essential 
information about the nature and influence of nuclear 
forces in system of interest. Also, comparing 
obtained theoretical results and experimental data, 
have shown applicability of the method used in this 
work and cluster approximation for description of 
reactions involving lightweight nucleus in the field of 
low energy.
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