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1 Introduction 
 
Einstein's equations [1] 
 

1 =
2

R Rg T   ,            (1) 

 
relate the geometric structure of spacetime, which is 

given by the Einstein tensor 1=
2

G R Rg   , 

with the matter content of spacetime, which is given 
by the energy-momentum tensor Tμv. Moreover, the 
equivalence principle allows us to establish a 
relationship between the geometric structure of 
spacetime and the gravitational field. This implies 
that the curvature of spacetime, interpreted as 
four-dimensional differential Riemannian manifold, 
can be considered as a measure of the gravitational 
interaction. For instance, if the spacetime is flat, Rμv 
= 0, the Einstein tensor vanishes, leading to the 
condition that the matter content of the spacetime 
vanishes too. The opposite is not true. If Tμv = 0, the 
Ricci tensor Rμv and the curvature scalar R vanish as 
well, but the curvature tensor Rμv can be different 
from zero. 

Einstein's general relativity is thus a theory of the 
gravitational interaction. As such, it should be able to 
describe all physical situations in which the 
gravitational field is involved. Consider, for instance, 
the case of astrophysical compact objects, i.e., 
objects that are small for their mass. In general, the 
class of astrophysical compact objects is often 

considered to contain collectively planet-like objects, 
white dwarfs, neutron stars, other exotic dense stars, 
and black holes. The problem of describing the 
gravitational field of compact objects can be split 
into two related problems, namely, the exterior and 
the interior field, each of them represented by a 
particular metric ig  and eg , respectively. The 
surface of the compact object represents the 
hypersurface at which the interior and the exterior 
fields must coincide. The exterior field corresponds 
to a vacuum spacetime Tμv = 0, for which Einstein's 
equations reduce to 

= 0 ,R                    (2) 

whereas for the interior field it is necessary to choose 
a particular energy-momentum tensor that would 
take into account all the physical properties of the 
internal structure of the compact object. A 
particularly simple choice is the perfect-fluid 
energy-momentum tensor [2]  

 
= ( ) ,T p u u pg              (3) 

where ρ and p are the density and the pressure of the 
fluid, respectively, and uμ is the 4-velocity. The case 
of fluids with anisotropic pressures is also used in the 
literature. 

Most compact objects, however, are 
characterized by the presence of internal and external 
electromagnetic fields. This implies that in general 
we should consider the Einstein-Maxwell theory. In 
this case, the exterior field should be described by an 
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exterior metric which satisfies the electrovacuum 
equations 

 

;
1= , = 0 ,
4

R F F g F F F  
        

 
    (4) 

 
where Fμv is the Faraday electromagnetic tensor. On 
the surface of the compact object, the exterior metric 
must be matched with the interior metric which 
satisfies the general equations 

 
1 = [( ) ]
2

1
4

R Rg p u u pg

F F g F F

    

 
   

 



   

   
 

,     (5) 

 
; = 0 .F 
                     (6) 

 
In this work, we present a brief review of the 

main exact solutions of Einstein-Maxwell equations 
which can be used to describe the exterior and 
interior field of astrophysical compact objects. We 
interpret the solutions in terms of their multipole 
solutions. To this end, we use the Geroch-Hansen [5, 
6] procedure which provides a relativistic and 
coordinate-invariant definition of multipole 
moments. According to this definition, any 
stationary, vacuum, asymptotically flat solution of 
Eistein's equations can be uniquely characterized by 
two sets of multipoles Mn and Jn (n = 0.1, ...), the first 
of which represents the field generated by the mass 
distribution whereas the second one is due to the 
rotation of the distribution. In the case of 
electrovacuum fields, two more sets En and Hn must 
be included, representing the electric and magnetic 
multipoles of the electromagnetic field, respectively. 
The concrete calculations necessary to find the 
explicit expressions of the multipole moments for 
particular solutions are not easy to be carried out. 
Some auxiliary procedures can be used which are 
based on particular representations of the solutions. 
Here, we will use the Ernst representation and the 
concrete formulas derived in [7, 8]. 

This paper is organized as follows. First, in Sec. 
2, we present the general line element that can be 
used to investigate the structure of the exterior and 
interior field equations. In Sec. 3, we present the Kerr 
metric with its multipole structure and its 
generalizations which include the electric charge and 
higher multipole moments. In Sec. 4, we mention the 
main problems associated with the search for 

perfect-fluid interior solutions of Einstein and 
Einstein-Maxwell equations. We propose an 
alternative approach that implies the inclusion of the 
quadrupole as an additional degree of freedom. This 
could contribute to solve the general set of 
Einstein-Maxwell equations. Section 5 contains the 
conclusions. We use throughout the paper geometric 
units with G = c = 1. 

 
2 Line element 
 
It is very difficult to find physically relevant 

solutions of Einstein's equations. To simplify the 
resulting system of differential equations, one 
usually assumes that certain conditions are satisfied 
which follow from the physical properties of the 
system under consideration. In the case of compact 
objects, two assumptions are made, namely, 
stationarity and axial symmetry. The first condition 
means that the field does not depend explicitly on the 
time coordinate, say t. This is in accordance with our 
experience since the shape and rotation of isolated 
compact objects have not been observed to change 
over long periods of time. The second condition is 
also based on observations. Indeed, all compact 
objects observed in Nature are characterized by a 
particular rotation with respect to an axis located 
inside the object. The rotation axis determines a 
privileged direction with respect to which compact 
objects are usually symmetric. It is therefore 
physically meaningful to assume that the 
gravitational field and, consequently, the spacetime 
metric are stationary and axially symmetric. Under 
these conditions, one can show that the line element 
reduces to the Weyl-Papapetrou-Lewis form [2] 

 
2 2

1 2 2 2 2 2

= ( )

( )

ds f dt d

f e d dz d

 

  

 

    
,       (7) 

 
where f, ω, μ, and γ are functions which depend on 
the spatial coordinates ρ and z only. Notice that the 
metric does not depend on the coordinates t and φ as 
a consequence of the stationarity and axial symmetry 
assumptions, respectively. 

The corresponding field equations are, in general, 
a highly non-linear and complicated system of 
second-order partial differential equations. Several 
representations for the field equations are known in 
the literature [2, 3]. The particular form of the line 
element (7) is convenient for the analysis of the field 
equations structure. For instance, in the limiting case 
of static vacuum field (ω = 0), the function f turns out 
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to satisfy a second-order linear differential equation, 
whereas all the non-linearities of Einstein's equations 
are contained in the metric function γ. In the case of 
electrovacuum spacetimes, the function μ turns out to 
satisfy a harmonic differential equation so that it can 
be chosen as μ = ρ to simplify the form of the 
remaining field equations. In the general case of 
interior perfect-fluid metrics with electromagnetic 
field, the functions f, ω and μ satisfy a system of three 
coupled, non-linear, second-order, partial differential 
equations and the function γ is determined by a set of 
two first-order differential equations which can be 
integrated by quadratures. 

As we will see below, for the representation of 
particular exact solutions, however, the 
cylindrical-like coordinates of the line element (7) 
are not very convenient. In fact, the physical 
significance of particular solutions can be understood 
more easily by using spherical-like coordinates. 
Also, the motion of test particles in the gravitational 
field of compact objects have been analyzed mostly 
in spherical-like coordinates [4]. 

An additional condition must be imposed in order 
for a particular solution to describe the exterior field 
of compact objects, namely, asymptotic flatness. 
This is a physical condition, implying that far away 
from the gravitational and electromagnetic source the 
fields must vanish, which is equivalent to saying that 
the metric reduces to the flat Minkowski metric. All 
the solutions presented in this work satisfy this 
physical condition. 

 
3 Exterior electrovacuum solutions 
 
The first vacuum solution of Einstein's equation 

was obtained by Schwarzschild in 1916. In 
spherical-like coordinates, it can be expressed as 

 
2

2 2

2 2 22

2= 1 21

( )sin

m drds dt mr
r

r d d  

    
  

 

.        (8) 

 
It represents the exterior field of a static 

spherically symmetric mass distribution. In this case, 
only one multipole moment is different from zero, 
namely, the monopole M0 = m. This is due to the 
spherical symmetry and the lack of rotation and 
electromagnetic field. The complexity of the field 
equations for the general stationary case is so high 
that it took almost fifty years to take into account the 
rotation of the source in the Kerr metric [9] 

2 2 22 2
2 2

2 2 2 2 2
2 2 22

( ) 2 ( )sin sin=

( ) sin sin

a a r ads dt dtd

r a a d dr d

  

   

    
 

 
    

     

,(9) 

 
where 

 
2 2 2 2 2= 2 , = .cosr mr a r a          (10) 

 
The parameter α stands for the angular 

momentum per unit mass, J/m, as measured by a 
distant observer. This can also be seen at the level of 
the multipole moments which in this case can be 
expressed as1 

 
2

2

2 1 2

2 1
2 1

= ( 1) ,
= 0 , = 0 ,

= ( 1) .

k k
k

k k
k k

k

M ma
M J

J ma








         (11) 

 
Notice that the odd mass multipoles and the even 

angular-momentum multipoles vanish identically as 
a result of the additional symmetry of the Kerr 
solution with respect to the equatorial plane θ = π / 2. 

The charged generalization of the Kerr metric is 
obtained by considering the electromagnetic vector 
potential as the 1-form 

 

 2= ,sin
QrA dt a d  


        (12) 

 
which depends on the charge Q and the specific 
angular momentum α. It then follows that the 
magnetic field is generated by the rotation of the 
charge distribution. To find the corresponding 
metric, it is necessary to solve the complete set of 
Einstein-Maxwell equations (4) simultaneously. The 
final expression for the solution turns out to be 
identical to (9) and the only difference is at the level 
of the function Δ, namely, 

 
2 2 2= 2 .r mr a Q             (13) 

 
 The corresponding electromagnetic multipoles 

En and Hn turn out to proportional to Mn and Jn, 
                                                      

1  Notice that the original Geroch-Hansen definition of 
multipole moments leads to expressions with the opposite sign in 
front of Mn so that, for instance, the total mass is negative, 

0 = .GHM m However, a conventional normalization of the 
multipoles can be performed so that a positive sign for the total 
mass is obtained. Weuseherethisconvention. 
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respectively, as a result of the non-linear 
gravitational interaction between the mass and the 
charge distribution. 

According to the black hole uniqueness theorems 
[10], the charged Kerr solution is the most general 
electrovacuum solution that describes the 
gravitational and electromagnetic field of a black 
hole. This means that for a black hole all multipole 
moments must be given in terms of the mass (M0= 
m), the angular momentum (J1= J), and the electric 
charge (E0 = Q). All the remaining higher multipoles 
must depend explicitly on only these three 
parameters. In the case of other astrophysical 

compact objects, like white dwarfs or neutron stars, 
the uniqueness theorems are not valid. This means 
that higher multipoles, like the mass quadrupole or 
the electric dipole, could play an important role in the 
description of the gravitational field. 

To begin with, let us consider a static mass with a 
quadrupole deformation. There are several solutions 
in the literature that can be used to describe a mass 
with a quadrupole [11 – 16]. The common feature of 
most solutions is that they are given in terms of quite 
complicated analytical expressions. To our 
knowledge, the simplest solution for a mass with a 
quadrupole is the q – metric [16]

 

(2 )1 2 22
2 2 2 2 2 22

2

2 2 sin= 1 1 1 sin22 1

q qq qm m m drds dt r d r dmr r r mr
r

   
  

  
                          
   

     
(14) 

 
which was originally found by Zipoy [17] and 
Voorhees [18] in prolate spheroidal coordinates. If 
the quadrupole parameter vanishes (q = 0), we 
recover the spherically symmetric Schwarzschild 
solution. 

Static solutions with higher multipoles are also 
known. For instance, the most general Weyl solution 
in cylindrical-like coordinates (7) takes the form 

 

1 2 2
=0 2 2 2

ln = 2 (cos ) , cos = ,
( )

n
nn

n

a zf P
zz

 








                          

(15) 

 
where αn (n = 0.1, ...) are arbitrary constants, and 
Pn(cosθ) represents the Legendre polynomials of 

degree n. The expression for the metric function γ can 
be calculated by quadratures. Then,

 
 

  1 12
, =0 2 2 2

( 1)( 1)= .
( 2)( )

n m
n m n mn m

n m

a a n m P P P P
n m z






  

 
 

  
  (16) 

 
Although, in principle, the Weyl solution should 

contain all asymptotically flat static metrics, it is not 
very convenient for the investigation of the physical 
significance of the metrics. For instance, the 
Schwarzschild solution can be obtained by selecting 
the values of the parameters = S

n na a  in such a way 
that the infinite sum 

 

1
=0 2 2 2

1 2(cos ) = ln 1
2

( )

S
n

nn
n

a mP
rz








  
 

    (17) 

converges to the Schwarzschild value. An alternative 
representation which is more suitable for the physical 
analysis of the metrics is given in terms of prolate 
spheroidal coordinates

 

 
2 2 2

2 2 2 2 2 2 2 2
2 2= ( ) ( 1)(1 ) ,

1 1
m dx dyds fdt e x y x y d
f x y

 
  

          
 (18) 

 
where m is a constant. The general asymptotically 
flat vacuum solution can be written as [12, 19] 

 

1

=0
ln = 2 ( 1) ( ) ( ) , =n

n n n n
n

f q P y Q x q const



  

(19) 
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where Pn(y) are the Legendre polynomials, and Qn(x) 
are the Legendre functions of second kind. The 
metric function γ is quite cumbersome and cannot be 
written in a compact form. The physical significance 
of the parameters qn can be obtained by calculating 
the corresponding Geroch multipole moments. In this 
case, we have that 

 
1!= , = ( 1) ,

(2 1)!!

n
n

n n n n n
n mM N R N q
n



 
    

 (20) 

 
where Nn represent the Newtonian multipole 
moments and Rn are relativistic corrections which 
must be calculated explicitly for each value of n. For 

instance, 0 1 2= = = 0,R R R 2
3 1

2= ,
5

R m N  

2 2
4 2 1

2 6=
7 7

R m N mN  , etc. We conclude that the 

parameters qn are the Newtonian multipoles, modulo 
a constant multiplicative factor, and determine also 
the relativistic corrections. 

The Schwarzschild metric is a particular case of 
the general solution (19) with q0 = 1 and qk = 0 (k > 
0), and can be written as 

 
2

2 2

1 1 1= , = ln .
1 2

x xf
x x y

 
 

        (21) 

 
It reduces to the standard form in spherical-like 

coordinates after applying the coordinate 
transformation x = r / m – 1 and y = cosθ. Moreover, 
the q – metric corresponds to 

 
1 2

2
2 2

1 1 1= , = (1 ) ln ,
1 2

qx xf q
x x y


      

  (22) 

 
for which the leading mass multipoles are 

 
3

0 2= (1 ) , = (1 )(2 ) .
3

mM q m M q q q      (23) 

 
This shows that the parameter q determines the 

quadrupole, but it also affects the total mass of the 
object. 

As for the stationary generalizations of the above 
static solutions, many of them have been obtained by 
using different solution generating techniques. For 
instance, the first generalization of the Kerr metric 
with an arbitrary mass quadrupole moment was 
obtained in [20]. Other stationary generalizations 

with quadrupole and higher moments were obtained 
in [21 – 25]. The general form of all these metrics 
does not allow to express them in a simple manner. 
All the metric that generalizes the stationary Kerr 
metric are expected to be equivalent at the level of 
the quadrupole moment, up to a redefinition of the 
parameters that determine the mass quadrupole. 

This short review of electrovacuum solutions 
shows that the situation is not complicated when we 
limit ourselves to the case of a rotating charged mass. 
This is due to the uniqueness theorems according to 
which the charged Kerr metric can be used to 
described any black hole in general relativity. Once 
we pretend to take into account the effects of a mass 
quadrupole, the situation becomes more and more 
complicated due to the increasing number of exact 
solutions. As mentioned above, one expects that all 
these solutions are equivalent at the level of the 
quadrupole moment due to the deformation and the 
rotation of the source. We believe that other physical 
conditions should be imposed in order to establish 
the difference between all available exact solutions. 
Further work in this direction is necessary in order to 
determine the physical relevance of all the solutions 
available in the literature. 

 
4 Interior solutions 
 
In the previous section, it was shown that in 

principle it is possible to describe the exterior field of 
compact objects by using exact electrovacuum 
solutions of Einstein-Maxwell equations. Each 
exterior solution, however, should be matched at the 
surface of the compact object with a physically 
meaningful interior solution. Consider, for instance, 
the simplest exterior solution with a mass monopole, 
i.e., the exterior Schwarzschild solution. If we 
suppose a perfect-fluid model for the interior 
counterpart with constant energy density (ρ = ρ0 = 
const) and no charge distribution (Fμv = 0), the 
resulting field equations can be integrated 
analytically, leading to the interior metric 

 
2

2 2

2
2 2 22

2

3 1= ( ) ( )
2 2

( )sin
( )

ds f R f r dt

dr r d d
f r

  

    

          
(24) 

with 
2

3

2( ) = 1 .mrf r
R

          (25) 
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Moreover, the pressure of the perfect fluid turns 
out to be a function of the radial coordinate r only 

 

0
( ) ( )= .

3 ( ) ( )
f r f Rp
f R f r

 


          (26) 

 
This solution satisfies the matching conditions at 

the surface of a sphere of radius R. From this point of 
view, it is a good candidate for describing the interior 
of a spherically symmetric mass distribution. From a 
physical point of view, however, this solution is not 
acceptable. Indeed, the assumption of constant inner 
density implies that the fluid is incompressible which 
leads to an infinite speed of sound. There are many 
other static perfect-fluid solutions (see [2] for a list of 
the most relevant solutions). Nevertheless, none of 
them has a meaningful physical significance. The 
generalizations that include charge distributions 
present similar problems. 

In the case of rotating fields, the situation is 
similar. Einstein's field equations have no known and 
physically acceptable interior solution that could be 
matched to the exterior Kerr metric. In particular, 
there are no interior solutions that could represent 
objects like the Earth or other rigidly rotating 
astrophysical objects. This is a major problem in 
general relativity. 

There exist some exact interior solutions of 
Einstein's equations with a perfect-fluid source 
equipped with an electromagnetic field [26] that 
satisfy all the energy conditions and are 
well-behaved in the entire spacetime. They are 
interpreted as describing the gravitational and 
electromagnetic fields of disk-halos. However, this 
kind of solutions cannot be matched with any known 
exterior solution. 

One century after the discovery of the exterior 
Schwarzschild solution, we see that even the simplest 
case of an interior field with only mass monopole 
moment does not have a definite solution in general 
relativity. In view of this situation, it seems 
convenient to try new and different approaches. We 
propose the following idea. The charged Kerr metric 
describes the exterior field of black holes. Once a 
particle crosses the horizon of a black hole, according 
to classical general relativity, it undoubtedly must 
end at the singularity. This means that the interior of 
black hole is a singularity where the classical theory 
breaks down. Consequently, it is not possible to 
describe the interior field of a black hole by using 
only classical general relativity; instead, it should be 
a problem of quantum gravity. In fact, we know that a 
crucial test of any quantum gravity model must be the 

avoidance of the classical singularities. 
Consequently, the interior counterpart of the charged 
Kerr metric cannot be found by using Einstein's 
equations only. 

Consider now classical compact objects, not 
including black holes. In the static vacuum case, we 
usually assume that they are described by the 
spherically symmetric Schwarzschild metric, the 
same which is used for black holes. This assumption 
should be changed. Indeed, it is hard to imagine in 
Nature a completely spherically symmetric compact 
object. Therefore, it is necessary to take into account 
the natural deviations from spherical symmetry. The 
simplest way to reach this end is to consider the 
contribution of an axially symmetric quadrupole 
moment. As we mentioned in the previous section, 
there are several exterior metrics which represent the 
gravitational field of mass with quadrupole. The 
search for the corresponding interior counterparts 
with quadrupole moment will certainly contribute to 
understand the difference between the exterior 
metrics. It could be, for instance, that each exterior 
metric corresponds to an interior metric with a 
particular physical structure. Also, if it turns out that 
an explicit exterior metric does not allow the 
existence of a reasonable interior counterpart, it 
should not be considered as physically relevant. 

We already started a program in which the main 
goal is to find interior solutions with quadrupole. The 
starting point is the exterior q – metric presented in 
the previous section. To search for the corresponding 
interior metric, it is very important to choose a 
convenient line element because the structure of the 
field equations depends on its explicit form. In [27], 
we proposed the following line element 

 
2

2 2 2 2 2 2 2 2= [ ] ,drds e dt e e d d
h

       
   

 
  (27) 

 
where = ( , )r   , = ( , )r   , = ( , )r   , and 

= ( )h h r . For a perfect-fluid source, the main field 
equations can be written as 

 
, , , , 2 216= ,

2
rr r rh

pe
h h h
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Moreover, the metric function γ is determined by 
two first-order differential equations that can be 
integrated once the remaining metric functions are 
known explicitly. This is an advantage of the above 
line element. An additional advantage is that the 
conservation of the energy-momentum tensor leads 
to two simple expressions 

 
, , , ,= ( ) , = ( ) ,r rp p p p           (30) 

 
which resemble the Tolman-Openheimer-Volkov 
relation of the spherically symmetric case [2]. This is 
particularly important when trying to perform the 
integration of the main field equations. It is still very 
difficult to solve the above system of differential 
equations. We therefore propose to use solution 
generation techniques. The first step in this direction 
was taken in [27] where a transformation was derived 
by means of which it is possible to generate interior 
solutions with quadrupole moment, starting from 
spherically symmetric interior solutions. The 
investigation of the resulting axially symmetric 
solutions with quadrupole is currently under 
investigation. 

 
5 Conclusions 
 
In this work, we presented a brief review of the 

problem of describing the gravitational and 
electromagnetic field of astrophysical compact 
objects by using the multipole structure of exact 
solutions of the Einstein-Maxwell equations. In the 
case of the exterior field, we presented the properties 
of the main solutions and its multipole moments. 
Using the black hole uniqueness theorems, we 
observe that the charged Kerr solution is the only 
metric which contains the mass monopole, the dipole 
angular momentum and the charge monopole. Once 
higher multipoles are taken into account, the 
uniqueness theorems are no more valid and several 
solutions are available in the literature. We mention 

the q – metric as the simplest solution with 
quadrupole moment. We showed that there exist 
general static solutions with an infinite number of 
parameters which determine the Newtonian and the 
relativistic Geroch-Hansen multipole moments. We 
mentioned that it is possible to find the corres-
ponding stationary electrovacuum generalizations by 
using solution generating techniques. In this manner, 
one can say that the problem of describing the 
exterior field of astrophysical compact objects can be 
solved by using multipole moments. 

In the case of interior solutions, the situation is 
completely different. Even the simplest case of 
perfect-fluid source with only mass monopole cannot 
be solved completely. A major problem, for instance, 
is that there is no known physically meaningful 
interior solution that could be matched with the 
exterior Kerr metric. We therefore propose an 
alternative approach. The interior counterpart of the 
charged Kerr solution cannot be found in classical 
general relativity because inside the horizon a 
curvature singularity exists which implies the break 
down of the classical theory. Quantum gravity should 
be used to investigate the internal structure of black 
holes. As for other compact objects, it is necessary to 
take into account the natural deviations from 
spherical symmetry by adding higher multipoles. In 
particular, we propose to use the exterior q  metric 
to search for an interior solution with quadrupole. 
Preliminary calculations show that it is possible to 
find interior solutions by using a particular 
transformation which allows one to generate interior 
axially symmetric solutions with quadrupole 
moment. This task is currently under investigation. 
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