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The results of Monte Carlo calculations of the ion drift characteristics in a constant and homogeneous electric 
field are presented for the values of the applied intensity in the range 1 <E / N <1000 Td for cesium, rubidium 
and mercury. The results of molecular dynamics simulation are used together with the Monte Carlo method for 
calculation of collisional characteristics. The drift velocity, mean kinetic energy, longitudinal and transverse 
diffusion coefficients, mean free path, and the fraction of collisions with backward scattering are calculated. It 
is shown that the introduction of dimensionless units makes it possible to reduce the characteristics for different 
gases to universal curves. And the Bhatnagar, Gross, and Krook collision integral for the problem of ion drift in 
an own gas leads to significant errors. Also, an unexpected and nontrivial fact about the collisions with back-
ward scattering is obtained and conclusions provided. It is found that using the BGK collision integral foe 
deseviling of ion drift an own gas leads to significant errors. There are some discussions regarding the large 
difference between present calculations and data of the BGK theory. 
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Introduction 
 
The flow of ions in a constant homogeneous 

electric field is usually characterized by the drift 
velocity, the values of the average energies of ions, 
with coefficients of mobility and diffusion in the 
longitudinal and transverse directions. The velocity 
of the ion drift in a gas under the action of a con-
stant homogeneous electric field is given by the re-
lation 

 
W = μE,                            (1) 

 
where the coefficient of ion mobility ( , , )E N T  
generally depends on both the field strength and gas 
parameters (temperature T, pressure p = NT, com-
position). A large number of experimental studies 
have been devoted to the determination of the diffu-
sion coefficients and the mobility of ions in gases, 
and it can be assumed that in weak and moderately 
strong fields ( / 1000E N Td ) the ion mobility is 
known with a very high accuracy <1% [1-4]. 

In the handbooks, experimental and calculated 
data are usually presented only the drift velocity, but 
other kinetic characteristics of the ion drift are nec-
essary for analyzing the properties of the gas dis-
charge. For example, to determine the ion Debye  
 

radius, it is necessary to know the average ion ener-
gy, taking into account their heating in an electric 
field. Many characteristics of a gas discharge are 
determined from the ionic distribution of velocities, 
and knowledge of the ion velocity distribution func-
tion is often sufficient.  

In [5], a modeling technique used to calculate 
the ion drift characteristics in a gas is described. The 
results of calculations of the characteristics of ion 
drift in a constant and homogeneous electric field at 
1<E/N<1000 for all noble gases. In this paper, 
which is a continuation of [6, 7], the results of mo-
lecular dynamics calculations are presented together 
with the Monte Carlo procedure for сollision simu-
lation. The characteristics of ion drift in a constant 
and homogeneous electric field at 1<E/N<1000 Td 
for cesium, rubidium and mercury are calculated. 

 
Theory 
 
In Table. 1 - 3 shows the flow characteristics of 

singly charged rubidium, cesium and mercury ions 
during their drift in a constant and homogeneous 
electric field in their own gas at atom temperature 
300 K and atomic density 2.69 *1019 см-3. In addi-
tion to the drift velocity, the tables show: the effec-
tive temperature of the ions, which is related to the  
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average kinetic energy of the ions by the ratio 
21 3v

2 2 effm T      ; temperature of ions along the 

field ||T  and across the field T , so the average en-

ergy of the ion is equal to 2
||

1 1
2 2

mW T T      ;   

 

the diffusion coefficients in the direction along and 
across the field, the mean free path, and the fraction 
of collisions with backward scattering with respect 
to the total number of collisions. The exact values of 
the various characteristics at intermediate points can 
be obtained by interpolation. 

 
 

Table 1 – Characteristics of the cesium ion flow during their drift in a constant and homogeneous electric field in their own gas at 
300 K and atomic density 2.69 1019/сm3. 

 
E/N, 
Td 

W, 
km/s 

effT , 
K 

T , 
K 

T , 
K 

lD  
cm2/s

 tD  
cm2/s

 
m.f.p. 
нм 

BS    / 
(BS+Iso) 

1 0.0006 300.2 300.3 300.2 0.0056 0.0056 3.8 0.093
2 0.0012 300.2 300.3 300.2 0.0056 0.0056 3.8 0.093
5 0.0031 300.3 300.4 300.2 0.0056 0.0056 3.8 0.093

10 0.0062 300.4 300.7 300.3 0.0056 0.0056 3.8 0.093
20 0.0124 301.1 302.3 300.5 0.0056 0.0056 3.8 0.094
50 0.0310 306.1 313.7 302.2 0.0056 0.0056 3.8 0.095
100 0.0613 323.1 353.4 308.0 0.0057 0.0056 3.9 0.098
200 0.119 384.3 496.7 328.0 0.0060 0.0058 4.2 0.11
500 0.259 676.7 1199 415.3 0.0068 0.0063 5.4 0.16

1000 0.431 1259 2649 563.8 0.0078 0.0068 6.9 0.24
 
 
 

Table 2 – Characteristics of the rubidium ion flow during their drift in a constant and homogeneous electric field in their own gas at 
300 K and the density of atoms 2.69 1019/сm3. 

 
E/N, 
Td 

W, 
km/s 

effT , 
K 

T , 
K 

T , 
K 

lD  
cm2/s

 tD  
cm2/s

 
m.f.p. 

nm 
BS    / 

(BS+Iso) 

1 0.00041 300.2 300.4 300.2 0.0038 0.0038 3.3 0.11
2 0.00084 300.2 300.4 300.2 0.0038 0.0038 3.3 0.11
5 0.00212 300.2 300.4 300.2 0.0038 0.0038 3.3 0.11
10 0.0043 300.4 300.5 300.3 0.0038 0.0038 3.3 0.11
20 0.0085 300.9 301.7 300.5 0.0038 0.0038 3.3 0.11
50 0.0213 304.5 310.3 301.7 0.0039 0.0038 3.3 0.11

100 0.0423 317.2 340.0 305.8 0.0039 0.0038 3.4 0.12
200 0.0822 363.5 449.2 320.6 0.0040 0.0039 3.6 0.13
500 0.183 594.3 1006 388.5 0.0045 0.0042 4.5 0.17
1000 0.307 1070 2192 508.6 0.0051 0.0044 5.6 0.24
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Table 3 – Characteristics of the mercury ion flow during their drift in a constant and homogeneous electric field in their own gas at 
300 K and atomic density 2.69 1019/сm3. 

 
E/N, 
Td 

W, 
km/s 

effT , 
K 

T , 
K 

T , 
K 

lD  
cm2/s

 tD  
cm2/s

 
m.f.p. 

nm 
BS    / 

(BS+Iso) 

1 0.0006 300.2 300.3 300.1 0.0055 0.0055 8.0 0.36
2 0.0012 300.2 300.3 300.1 0.0055 0.0055 8.0 0.36
5 0.0032 300.3 300.5 300.2 0.0055 0.0055 8.0 0.36
10 0.0063 300.7 301.5 300.3 0.0055 0.0055 8.0 0.36
20 0.0127 302.4 305.6 300.7 0.0055 0.0055 8.0 0.36
50 0.0313 313.4 333.5 303.3 0.0056 0.0055 8.2 0.37

100 0.061 348.4 422.7 311.3 0.0057 0.0055 8.6 0.38
200 0.113 457.8 704.6 334.4 0.0062 0.0054 9.6 0.41
500 0.243 969.3 2046 430.8 0.0099 0.0058 12.7 0.48
1000 0.441 2457 5937 716.4 0.0257 0.0085 18.3 0.53

 
 
 
The numerical data given above make it possible 

to obtain a fairly complete picture of the character of 
ion drift. We note some features of ion velocity dis-
tributions: 

1) Analysis of the distribution functions shows 
that when ion drift, in conditions typical for gas-
discharge plasma conditions, there is an appreciable 
heating of the ions not only in the longitudinal di-
rection, but also in the transverse direction. This is 
due to close collisions, when besides recharging, 
scattering also occurs at an arbitrary direction in the 
center-of-mass system; 

2) Even at a sufficiently high reduced electric 
field strength an ion flow does not form supersonic 
flux, in which the velocity of thermal, chaotic mo-
tion would be less than the velocity of the directed 
motion - the drift velocity. As already noted, due to 
the fact that with increasing field strength simulta-
neously with the increase of drift velocity there is an 
increase in the dispersion of the distribution func-
tion of the ion velocity (i.e., the longitudinal and 
transverse temperatures);  

3) In the velocity distribution of ions there is a 
large anisotropy (and a large difference between the 
longitudinal and transverse temperatures T|| and T ). 
Therefore, the diffusion fluxes along and across the 
field can vary greatly in magnitude;  

4) From the analysis of ion velocity distribution 
functions, from the analysis of other characteristics 
of the ion flux it follows that velocity module distri-
bution, as well as the velocity projections, has sig-
nificant differences from the corresponding Max-
wellian distributions. Moreover, there is a difference 
not only in the tails of the distribution functions, but 

also in the central part. Accordingly, the distribution 
function of ion velocity during their drift in their 
own gas cannot be described by a Gaussian curve 
(shifted Maxwell distribution function). 

In this connection, calculations were made with 
the determination of the fraction of collisions with 
backward scattering with respect to the total number 
of collisions, depending on the reduced field 
strength (naturally, the number of collisions does 
not include collisions with scattering at small angles 
due to divergence of the corresponding collision 
integral).  The results of the calculations showed 
that there is an unexpected fact - although the cross 
sections with charge exchange are the largest, colli-
sions with scattering back are only 15 - 45 percent. 
This takes place not only for the ions considered 
here for cesium, rubidium and mercury, but also for 
noble gases [7]. 

An analysis of the results of calculations shows 
that even in a strong field collisions with backward 
scattering are not dominant. But it is generally ac-
cepted that there is a decisive influence of collisions 
with the transfer of a charge, and often, when con-
sidering ion drift, only collisions with charge ex-
change are taken into account.  

To take into account the effect of collisions on 
the velocity distribution of ions, the model collision 
integral of Bhatnagar, Gross, and Krook (integral 
BGK) is often used [6, 8-11]. However, the ion flow 
characteristics given in the calculations show a large 
deviation from the equilibrium distribution and a 
significant effect of collisions with isotropic scatter-
ing. In this connection, let us consider, as an exam-
ple, the result of using BGK of the collision integral 
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Table 3 – Characteristics of the mercury ion flow during their drift in a constant and homogeneous electric field in their own gas at 
300 K and atomic density 2.69 1019/сm3. 

 
E/N, 
Td 

W, 
km/s 

effT , 
K 

T , 
K 

T , 
K 

lD  
cm2/s

 tD  
cm2/s

 
m.f.p. 

nm 
BS    / 

(BS+Iso) 

1 0.0006 300.2 300.3 300.1 0.0055 0.0055 8.0 0.36
2 0.0012 300.2 300.3 300.1 0.0055 0.0055 8.0 0.36
5 0.0032 300.3 300.5 300.2 0.0055 0.0055 8.0 0.36
10 0.0063 300.7 301.5 300.3 0.0055 0.0055 8.0 0.36
20 0.0127 302.4 305.6 300.7 0.0055 0.0055 8.0 0.36
50 0.0313 313.4 333.5 303.3 0.0056 0.0055 8.2 0.37

100 0.061 348.4 422.7 311.3 0.0057 0.0055 8.6 0.38
200 0.113 457.8 704.6 334.4 0.0062 0.0054 9.6 0.41
500 0.243 969.3 2046 430.8 0.0099 0.0058 12.7 0.48
1000 0.441 2457 5937 716.4 0.0257 0.0085 18.3 0.53

 
 
 
The numerical data given above make it possible 

to obtain a fairly complete picture of the character of 
ion drift. We note some features of ion velocity dis-
tributions: 

1) Analysis of the distribution functions shows 
that when ion drift, in conditions typical for gas-
discharge plasma conditions, there is an appreciable 
heating of the ions not only in the longitudinal di-
rection, but also in the transverse direction. This is 
due to close collisions, when besides recharging, 
scattering also occurs at an arbitrary direction in the 
center-of-mass system; 

2) Even at a sufficiently high reduced electric 
field strength an ion flow does not form supersonic 
flux, in which the velocity of thermal, chaotic mo-
tion would be less than the velocity of the directed 
motion - the drift velocity. As already noted, due to 
the fact that with increasing field strength simulta-
neously with the increase of drift velocity there is an 
increase in the dispersion of the distribution func-
tion of the ion velocity (i.e., the longitudinal and 
transverse temperatures);  

3) In the velocity distribution of ions there is a 
large anisotropy (and a large difference between the 
longitudinal and transverse temperatures T|| and T ). 
Therefore, the diffusion fluxes along and across the 
field can vary greatly in magnitude;  

4) From the analysis of ion velocity distribution 
functions, from the analysis of other characteristics 
of the ion flux it follows that velocity module distri-
bution, as well as the velocity projections, has sig-
nificant differences from the corresponding Max-
wellian distributions. Moreover, there is a difference 
not only in the tails of the distribution functions, but 

also in the central part. Accordingly, the distribution 
function of ion velocity during their drift in their 
own gas cannot be described by a Gaussian curve 
(shifted Maxwell distribution function). 

In this connection, calculations were made with 
the determination of the fraction of collisions with 
backward scattering with respect to the total number 
of collisions, depending on the reduced field 
strength (naturally, the number of collisions does 
not include collisions with scattering at small angles 
due to divergence of the corresponding collision 
integral).  The results of the calculations showed 
that there is an unexpected fact - although the cross 
sections with charge exchange are the largest, colli-
sions with scattering back are only 15 - 45 percent. 
This takes place not only for the ions considered 
here for cesium, rubidium and mercury, but also for 
noble gases [7]. 

An analysis of the results of calculations shows 
that even in a strong field collisions with backward 
scattering are not dominant. But it is generally ac-
cepted that there is a decisive influence of collisions 
with the transfer of a charge, and often, when con-
sidering ion drift, only collisions with charge ex-
change are taken into account.  

To take into account the effect of collisions on 
the velocity distribution of ions, the model collision 
integral of Bhatnagar, Gross, and Krook (integral 
BGK) is often used [6, 8-11]. However, the ion flow 
characteristics given in the calculations show a large 
deviation from the equilibrium distribution and a 
significant effect of collisions with isotropic scatter-
ing. In this connection, let us consider, as an exam-
ple, the result of using BGK of the collision integral 
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for analyzing the characteristics of the ion flux, tak-
ing into account only collisions with resonant 
charge exchange [7, 8]. 

The characteristics of the ion flux can be deter-
mined by solving the Boltzmann kinetic equation 
for the ion distribution function (v)f : 

 

v ( )
v st

f eE ff I f
t m

 
   

 
,  (2) 

 
where e – charge, m – ion mass, ( )stI f – collision 
integral.  

In a weakly ionized plasma, it is often possible 
to neglect elastic collisions of ions with atoms, elec-
trons, and ions. Since in the case of collisions of 
ions with the atoms of the proper gas, the cross sec-
tion for the resonant charge exchange of an ion is 
usually greatest, then we consider the kinetic equa-
tion (2) in the spatially homogeneous case with a 
constant electric field, taking into account only the 
resonant charge exchange of ions:  

 

[ (v ) (v) (v) (v )] v v vres a
eE f f f n d
m u

        
  , (3) 

 
where u - component of velocity along the direction 
of the electric field, res - the cross section of reso-
nant charge exchange, an  - atomic density, The dis-
tribution functions of ions and atoms are normalized 
to unity: (v) v (v) v 1f d d   . Equation (3) de-
scribes the process of ion transport, which is a relay 
character – this model was suggested by L. A. Sena 
[8, 12]. According to this model, the ion velocity 
after the collision is equal to the velocity of the atom 
with which it collided. This model does not take into 
account the change in the velocity of the atom dur-
ing the collision. 

Let us consider the model of ion motion in the 
case of the fulfillment of two conditions: 

1) The drift velocity W considerably exceeds the 
thermal velocity of the atoms  1/2/T iW V T m  ;  

2) There are only collisions of one type-with a 
resonant charge exchange of ions on the atoms of 
the own gas.  

When these conditions are met, we can neglect 
the thermal motion of the atoms and assume that the 
ions move uniformly accelerated in a constant elec-
tric field 0E  , stopping after each collision event. 
The condition TW V  can be satisfied with good 

accuracy either in the case of a high electric field 
strength or at a low gas temperature. 

In neglecting the thermal energy of the atoms 
and taking into account only collisions with charge 
exchange, the Boltzmann kinetic equation has the 
form [7, 8, 12]: 

 

st

eE f uf
m u 





, ( 0) 0f u   ,           (4) 

1(0)f c . 
 
If the cross section of resonant charge exchange 

depends on the velocity, then the ion distribution 
function has the form: 

 

  1
0

( )exp ( )
u

a res
mf u c u n u u du
eE


 

     
 

 ,     (5) 

 
where ( )u - Heaviside function, c1 – the constant, 
determined from the normalization condition.  

If the cross section of resonant charge exchange 
and the mean free path of the ion 01 /st an   do 
not depend on the velocity, then the solution of (4) 
has the form  

 

 
1/2 22( ) exp

2E E

m muf u u
T T

   
     

   
,         (6) 

 
where E stT eE . The distribution (6) is half the 
Maxwell distribution with a temperature equal to the 
energy recruited by the ion at the mean free path. 
Consequently, the average kinetic energy of the 
ions, due to the motion in the direction of the field, 

is 21 1 1
2 2 2E stm u T eE    . The ion flux density for 

this distribution is  1/22 /i i stJ n eE m  , the av-
erage ion velocity (drift velocity) is 

   1/2 1/22 / 2 /st EW eE m T m    . 
Collisions with charge exchange play the most 

important role, but collisions of other types have a 
significant effect on the characteristics of ion veloci-
ty distribution. In addition to collisions with re-
charging, an important role can be played by polari-
zation and gas-kinetic collisions. In the case of such 
collisions, the ion does not stop, but dissipates at the 
fixed center in the center-of-mass system of the at-
om-ion. A good approximation of this type of  
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collision is the model of hard spheres, i.e. isotropic 
scattering. Without consideration of these collisions, 
heating of the ions in the transverse direction can 
not be taken into account. By analogy with the hy-
drodynamic approximation, it is often assumed that 
the drift of ions in a strong field is described by the 
shifted distribution function of Maxwell: 

 

 
3/2 2 2 2

0
[( ) v ]v exp .

2 2i i

m m u W wf
T T

     
    
   

 (7) 

 
This distribution has two parameters - the drift 

velocity W and the ion temperature Ti, which deter-
mines the thermal dispersion of the ion velocities 

 1/2/i iV T m , here the direction of the field and 
drift coincides with the x axis. 

To take into account the impact of collisions, the 
model collision integral of Bhatnagar, Gross, and 
Kruk (BGK integral) is often used [7-9]: 

 

0
st

fI 



 ,                            (8) 

 
which describes the relaxation of the ion distribution 
function f to the equilibrium distribution function of 
atoms φ with a characteristic relaxation time 0 =  
const. The BGK integral qualitatively correctly de-
scribes the process of plasma relaxation to equilibri-
um in the case of a slight deviation from it. But it is 
inapplicable if the collision frequency of ions with 
atoms depends on their relative velocity, or the de-
viation from equilibrium is large. The ion transport 
equation in the spatially homogeneous case has the 
form: ( ) ( )EV f u u f u    , where 0 /EV eE m . 
Its solution has the form: 

  1 ( )exp .
u

E
E E

u uf u u du
V V




    
 

       (9) 

 
In the case of a subthermal flow velocity, when 

the drift velocity  1/2/W T m , and the Maxwelli-
an distribution of atoms 

 1/2 2
0 0( ) ( / 2 ) exp / 2u m T mu T   , the solution 

(2) with the collision integral (8) has the form 
 

  2( )(1 / )E Tf u u uV V  .           (10) 
 
 

This distribution coincides with the expansion of 
the shifted Maxwellian distribution (7) at 

 1/2/E TV W V T m   . As expected, in the case 
of a small deviation from equilibrium, the use of the 
model integral BGK gives a reasonable result. In the 
case of a high ion flow rate 0 /TW V T m   and 
a Maxwellian distribution of atoms, the distribution 
(9) has the asymptotics: 

 

  ( ) exp
E E

u uf u
V V

 
  

 
.            (11) 

 
This distribution describes the uniformly accel-

erated motion of ions in a constant electric field 
0E  , which stop after each collision event, the 

probability of which does not depend on the veloci-
ties of the ion and the atom. This unnatural hybrid 
model (taking the properties of polarization and res-
onant collisions) is a consequence of the structure of 
the integral BGK for large fields, when 

 1/2/W T m . It does not take into account the 
difference of the ion velocity from zero after the 
collision.  

If we neglect the thermal motion of the atoms in 
comparison with the flow velocity and represent the 
distribution function of atoms in the form 

( ) ( )u u  , then the particle profit in the BGK 
integral has the form 0/BGKI    , the decrease is 

0/BGKI f   . For collisions with a resonant pre-
dissection at a constant cross section, the profit and 
loss of the particles has, respectively, a form 

0/resI    , a decrease - 0res aI n uf  . Consequent-
ly, the BGK integral even incorrectly conveys the 
nature of the particle loss at a qualitative level, this 
explains the radical difference between the distribu-
tion (11) and the physically reasonable distributions 
(6) and (7). 

For polarization collisions characterized by a 
constant mean free path, the particle loss in the 
BGK integral can be reduced to the form 

0/polI f   . But the profit of particles in the colli-
sion integral depends on the entire distribution  
 
function and can in no way be approximated by the 
quantity 0/BGKI    . This means that, regardless of 
the form of the distribution function (v)f , the  
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number of ions scattered as a result of collisions into 
a group with velocities v ,  is equal to the number of 
ions that would be scattered from this group in the 
case of an equilibrium distribution at a collision fre-
quency independent of velocity [9].  

The BGK integral does not allow to take into 
account the following factors:  

1) for collisions characterized by a constant
cross section (charge exchange, gas-kinetic), it does 
not take into account the dependence of the collision 
probability on the velocity;  

2) for collisions characterized by a constant
mean free path (polarization collisions), he does not 
take into account the difference between the ion ve-
locity after the scattering event from zero. 

These factors are decisive at a drift velocity 
comparable to the thermal velocity of the atoms. 
Consequently, the BGK integral is inapplicable for 
the problem of determining the characteristics of the 
ion drift in its own gas. 

Let us compare the results of calculating the 
drift velocity of cesium, rubidium and mercury ions 

in the own gas with the drift velocity from the solu-
tion of the Boltzmann equation with the integral of 
the BGK collisions [7]: 

1/2

1/2 1/2

( 1)
(1 )T

W F F
V F F




 
.    (12) 

Results and discussions  

In Figure 1 shows the results of calculating the 
drift velocity of an ion in its own gas, depending on 
the electric field strength for cesium, rubidium and 
mercury. In Figure 2 shows the same results, but the 
drift velocity is normalized to the value of the ther-
mal velocity (the velocity of an ion with an energy 
equal to the temperature of the atoms), and the field 
is normalized by the value of the characteristic 
"heating field": / TF E E . The magnitude of the 
heating field is determined in such a way that an 
energy equal to the temperature of the atoms is ac-
cumulated on the mean free path. 
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Figure 1 – Results of calculating the drift velocity of an ion in its own gas as a function of the electric 
field strength in dimensionless units. The drift velocity is normalized to the value of the thermal velocity 

(the velocity of an ion with an energy equal to the temperature of the atoms), the field is normalized to the 
value of the characteristic "heating field", in which an energy equal to the temperature of the atoms is ac-

cumulated on the mean free path. The shaded curve is the solution of the Boltzmann equation with the 
BGK collision integral (11). 
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Figure 2 – Results of calculating the drift velocity of an ion in its own gas as a function of the electric 

field strength in dimensionless units. The drift velocity is normalized to the value of the thermal velocity 
(the velocity of an ion with an energy equal to the temperature of the atoms), the field is normalized to the 
value of the characteristic "heating field", in which an energy equal to the temperature of the atoms is ac-

cumulated on the mean free path. The shaded curve is the solution of the Boltzmann equation with the 
BGK collision integral (11) 

 
Conslusions 
 
The above graphs make the following conclu-

sions: 
1) The introduction of dimensionless units 

makes it possible to reduce the characteristics for 
different gases to universal curves; 

2) The BGK collision integral for the problem 
of ion drift in an own gas leads to significant errors, 
which does not allow even describing real processes 
at a qualitative level (see, for example [7-9]); 

3) There is an unexpected and nontrivial fact: 
although cross sections with charge exchange are 
the largest, collisions with backward scattering 
make up only 15-45 percent for noble gases at 300 
K (for this reason see [16], where an attempt was 

made to approximate collisions in the form of a sum 
of collisions with isotropic scattering and backscat-
tering). 

The analysis showed that such a large difference 
in the calculations and the BGK theory is due to the 
fact that even in a strong field, collisions with 
backward scattering are not dominant. The results of 
the calculations demonstrate that the approach to the 
analysis of ion drift based on the BGK collision in-
tegral [10] is accompanied by large errors. These 
features of ion drift play an important role when 
considering the properties of cryogenic discharges 
and in a mixture of gases [5, 13-15]. The above nu-
merical data explain the results of the analysis of 
ion-atom collisions [16] and significantly supple-
ment the reference data [1-4]. 
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