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In this work, we have obtained the dispersion relation for the space-charge wave propagating in a dusty plasma 
column containing collisional streaming ions by using the fluid equations and the Poisson equation which lead 
to a Bessel equation. The growth rate of the space-charge and the geometric and collisional effects on the 
growth rate have been investigated. It is shown that the space-charge wave can be excited for a large axial wave 
number. The growth rate of excitation increases as the order of the roots of the Bessel function increases. It is 
also found that the growth rate decreases with an increase of the radius of column as well as with an increase of 
the collision frequency. In addition, it is found that the disturbance of wave can be damped only for small wave 
numbers and the ion collision plays a significant role in the physical properties of the space-charge wave. 
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Introduction 
 

The effects of radial boundaries of plasma 
columns on plasma waves have been investigated 
previously [1-5]. A decade ago, the behavior that the 
radial boundary leads to a frequency cutoff in the 
dust-acoustic wave dispersion relation was reported 
[6, 7]. Recently, the plasma waves in a radially 
bounded system such as a column plasma were 
reported to account for the Landau damping of dust-
acoustic space-charge waves, diffusion effects on 
the dissipation of waves in a turbulent plasma 
column, wake potential effects on the propagation of 
dust ion-acoustic waves, etc. [8-10]. The dispersion 
relations for plasma wave in a radially bounded 
collisional dusty plasma also have drawn much 
interests since they explain the boundary effects for 
the streaming charged particles in an electric field 
and the dissipative ion-dust streaming instability [3, 
11]. The streaming instability plays an important 
role in various plasmas and astrophysical 
environments since it is connected to various 
physical dynamic phenomena including the heating 
mechanism in plasma systems [12-17]. For 
instances, the effects of non-Maxwellian ion-dust 
streaming instability, the effects of cyclotron motion 
in a positron-electron pair plasma, dust-dust two 
streaming instability in dust clouds, etc. have been 
recently reported [18-20]. In this work, we are 
motivated to study the excitation and dissipation of 

the plasma waves in a column dusty plasma 
containing the collision-dominated streaming ions. 
To the best of our knowledge, the boundary effects 
on the excitation and dissipation of the plasma wave 
in a collisional two-stream dusty plasma in a column 
has not been reported yet. Since the ion stream is 
collision dominated, the susceptibility of the ion 
must contain the appropriate collision frequency [13, 
21]. Then the fluid equations for each charged 
particle species and the Poisson’s equation will 
construct a closed system to yield a Bessel equation 
whose solution is finite at the origin and null at the 
boundary of the column dusty plasma. Then, we 
obtain the new results on the dispersion relation for 
the space-charge wave propagating in a column 
dusty plasma containing collision-dominated ion 
flow. The growth rate of the space-charge wave is 
also derived and the geometric and collisional 
effects on the growth rate are investigated. 

 
Numerical Simulation 
 
Our duty plasma is uniform, bounded by a 

column, and contains electrons, singly charged ions, 
and negatively charged dust grains of the charge 
state Zd so that the dust charge is denoted as  
qd = – Zde. In the equilibrium, the quasineutrality 
condition yields, ne0 + Zdnd0 – ni0 = 0, where nj0 is 
the equilibrium density of the plasma species j (= e, 
I, d for electrons, ions, and dust grains, 
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respectively). The plasma has a cylindrical geometry 
with coordinates (r, θ, z) and is azimuthally 
symmetric so that there is no θ-dependence. We 
shall consider that the curl of electric field will be 
vanished, i.e., the perturbation is electrostatic. 
Under these conditions, plasma motions on the r – θ 
plane can be ignored and the wave propagation in 
the z-axis is important. The system is then described 
using the continuity, momentum, and Poisson’s 
equations for each charged particle species given by 
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the symbols nj, vj, Pj, qj, and φ denote the density, 
velocity, pressure, and electrostatic potential, 
respectively. We linearize the above equations by 
letting nj = nj0 + nj1, vj = vj0 + vj1, and φ = φ1 where 
the quantity with subscript 0 denotes the 
equilibrium quantity and the quantity with subscript 
1 denotes the small deviation from its equilibrium 
values. We let φ0 = 0. In a cylindrical coordinate 
system, the perturbed quantities nj1, vj1, and φ1 are 
assumed to vary as [22, 23]: 
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where 1( ),jn r 1( ),j rv and ( )r  are the amplitudes 
of perturbation in the transverse direction and kz is 
the propagation wave number along the axial z-
direction of the column, kr is the transverse wave 
number, and ξ is the separation constant for the 
azimuthal angle θ. For the azimuthally symmetric 
system, we have the following form of the 
differential equation for the transverse potential 

1( )r [23] by linearizing Eqs. (1) and (2) with 
Poisson’s equation, 
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where the separation parameter β2 is given by the 
plasma dielectric function εl(ω, kz) in the form 

 2 2/ ,z zk k   


. In Eq. (6), the solution can 
be written as 1 1 0 2 0( ) ( ) ( )r d J r d N r     
where J0(βr) is the zeroth-order Bessel function of 
the first kind and N0(βr) is the zeroth-order 
Neumann function, with constant coefficients d1 
and d2. The boundary condition at r = R requires 
that the transverse potential must be zero, i.e., 

1( ) 0R  , where R is the radius of the column. At 
the origin, we must have finite potential, i.e., c2 = 0. 
Therefore, at r = R, we just have J0(βR) = 0 and the 
separation parameter β is determined by βR = α0n, 
where α0n are the nth-roots of J0(βR) = 0, i.e, α01 = 
2.4048, α02 = 5.5201, α03 = 8.6537, etc. We now 
consider a cold ion stream in a cold dusty plasma 
where the streaming ions are collision dominated, 
whereas the electrons and dusty particles are 
stationary. Here, we assume that the collision 
dominant ions are flowing in the z -direction. The 
longitudinal dielectric permittivity for a cold 
plasma with streaming ion reads [13]:  
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where  1 224pj j j jn q m   is the plasma 
frequency of species j. After some mathematical 
manipulations, we obtain 
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where we assume for simplicity pe   and 

pd   provided that 0 1n zk R  . Here, for 

z pe ik u , the instability of the wave occurs. 
Therefore, the system can be unstable in spite of the 
collisional dissipation. We also find that the wave 
frequency for a column plasma is always smaller 
than that for a bulk plasma due to the geometric 
effect of the bounded plasma. However, the growth 
rate for a column plasma is larger than that for a 
bulk plasma. In addition, the range of wave number 
for propagation is suppressed by the finite radius of 
the column. For the numerical analysis, we would 
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scale the frequency, the wave number and the radius 
of column. If we let R i    , where R  and 
γ are the real and the imaginary part of ω, and scale 
the frequency as pe   , then the imaginary 
part of the scaled wave,  , can be given as 
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where other scaled quantities are defined by 

pi pi pe   , pe   , z z i pek k u   and 

pe iR R u . Therefore, the instability of the 
wave occurs when the scaled axial wave number is 
greater than unity. However, the wave will be 
damped for 0 1n zR k   . Hence, we have 
found that the unstable mode of the space-charge 
wave would be caused by the coupling between the 
electron plasma wave and the positive dissipation 
due to the collision-dominated streaming ions. In 
addition, the damping mode would be caused by the 
coupling between the electron plasma wave and the 
negative dissipation.  
 

Results and Discussions 
 
Figure 1 shows the scaled growth rate ( 0)   

of the space-charge wave in a column filled with the 
collision-dominated streaming ions as a function of 
the scaled axial wave number for various values of 
the root of the zero-the order Bessel function. In this 
figure, we have found that the space-charge wave 
can have unstable growing modes for large axial 
wave numbers. As shown in this figure, the scaled 
growth rate of the space-charge wave increases with 
an increase of the order of roots of the Bessel 
function. However, it is found that the influence of 
harmonic-order on the scaled growth rate decreases 
with increasing scaled axial wave number. Hence, 
we have found that the harmonic-order effect on the 
scaled growth rate decreases with an increase of the 
streaming velocity.  

Figure 2 shows the scaled growth rate ( 0)   
of the space-charge wave as a function of the scaled 
axial wave number for various values the scaled 
radius of the plasma column. From this figure, it is 
found that   decreases with an increase of R . It 
is also understood that   decreases with an 
increase of the electron plasma frequency. In 

addition, it is found that the influence of radial-size 
on   decreases with increasing scaled axial wave 
number. Figure 3 shows the scaled damping rate 

( 0)   of the space-charge wave as a function of 
the scaled axial wave number for various values the 
scaled radius of the plasma column. From this figure, 
it is found that the space-charge wave can be 
damped for small axial wave numbers. As it is seen, 
the damping domain increases with an increase of 
the scaled radius of the plasma column. Hence, we 
have found that the ion collision plays a crucial role 
in the physical characteristics of the space-charge 
wave. These result would be useful for 
understanding the propagation of the space-charge 
wave in a dusty plasma column. 
 

 
Figure 1 – The scaled growth rates   are drawn as a 

function of the scaled wave number zk  for various roots 
of the Bessel function. The solid, dashed, and dotted lines 

are plotted for the roots α01 = 2.4048, α02 = 5.5201, and 
α03 = 8.6537, respectively, for 41 10    and 1R   

 

 
Figure 2 – The scaled growth rates   are drawn as a 

function of the scaled wave number zk  for various roots 
of the Bessel function. The solid, dashed, and dotted lines 

are plotted for the roots 1R  , 2R  , and 10R  , 
respectively, for 41 10    and 

01 2.4048  . 
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Figure 3 – The scaled damping rates   are drawn as a 

function of the scaled wave number zk  for various roots 
of the Bessel function. The solid, dashed, and dotted lines 

are plotted for the roots α01 = 2.4048, α02 = 5.5201, and 
α03 =8.6537, respectively, for 41 10    and 1R  . 

 
Conclusions 
 
The new results on the dispersion relation have 

been obtained for the space-charge wave propa- 
 

gating in a dusty plasma column with collisional 
streaming ions. It is has been also derived the 
growth rate of the space-charge wave. The 
geometric and collisional effects on the growth rate 
have been investigated. Obtained results show that 
the unstable mode of the space-charge wave would 
be caused by the coupling between the electron 
plasma wave and the positive dissipation due to the 
collision-dominated streaming ions. In addition, the 
damping mode would be caused by the coupling 
between the electron plasma wave and the negative 
dissipation. The space-charge wave can have 
unstable growing modes for large axial wave 
numbers. Influence of harmonic-order on the scaled 
growth rate decreases with increasing scaled axial 
wave number. And the harmonic-order effect on the 
scaled growth rate decreases with an increase of the 
streaming velocity. The space-charge wave can be 
damped for small axial wave numbers. Damping 
domain increases with an increase of the scaled 
radius of the plasma column. It is shown that the ion 
collision plays a crucial role in the physical 
characteristics of the space-charge wave. 
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