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Halo and skin structure of 1/2+, 3/2+, 5/2+ excited states of 13C nucleus is under investigation. The modified radial 
functions have been constructed basing on the shell model functions. The matching procedure was performed 
while using the corresponding Whittaker exponential-like asymptotics. To find the matching radius via the 
oscillator parameter r0 three options were examined related to the experimental and theoretical data on the mean 
square radii, and uncertainty relation. The renormalization of the modified functions shows the input of the 
asymptotic region near 15-20%. The most qualitative effect is the redistribution of the probability density both 
at short and long-range distances. The obtained functions are given as parametrization by Gauss basis. It is 
proposed to confirm the observed halo and skin states of 13C via the impulse distributions measured with different 
probing projectile like high-energy protons or α-particles. The most probable halo effect the 2S-state reveals due 
to the node behavior of the corresponding radial wave function. 
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Introduction 
 
Currently, vast experimental material is 

assembled on the study the unusual properties of 
some atomic nuclei, known as the halo-states [1-5]. 
The defining feature of a halo was from the beginning 
understood to be a large spatial extension caused by 
neutrons tunneling out from a nuclear core. Nuclei 
may reveal not only well-developed halo states but 
also something intermediate between normal nuclei 
and halo nuclei, so called skin-states.  

Halo effect research attractiveness that is quite 
enough reliably identify two main features of halo 
states as large root mean radius rms and narrow 
localized impulse distributions. These two 
characteristics, obviously, related to each other 
according the Heisenberg uncertainty relation 
(ΔxΔp~ħ). 

Despite the seeming simplicity and transparency 
of the question, both experimental and theoretical 
studies still face certain difficulties. First of all, it is 
ambiguity on rms radii data [6-7]. The difficulty lies 
in the fact that the lifetime of most neutron-rich 
isotopes is extremely short and is typically a few 
milliseconds. It is therefore to work with short-lived 
isotopes needed entirely new technique, compared 
with conventional ones. 

Recent advances are related to the collinear laser 
beams and anti-collinear technologies (CACLB) of 
the European Organization for Nuclear Research. 
Today, the installation ISOLDE at CERN 
synthesized radioactive isotopes up to Z = 10 in a 
collision energy of 1.4 GeV protons on uranium 
carbide target. Currently, it reports on the results of 
measurements of the charge and mass and radii for 
7,9,10Be isotopes by laser spectroscopy [8]. With great 
precision, it was found that 11Be is a halo-nucleus 
with a radius of 7 fm, to compare 10Be isotope core 
radius is 2.5 fm. Experiments are planned to heavier 
isotopes, particularly for the carbon-oxygen group. 

Theoretical models deal with the description of 
the nuclei with prominent α- cluster structure, 
which include the majority of p-shell nuclei, may 
be represented as a semi-phenomenological and 
microscopic. The first, are the cluster models and 
their various modifications [9]. To the second ones 
may refer the models such as the resonating group 
method (RGM), the method of K-harmonics, 
variational Monte Carlo (VMC), the method of 
fermion molecular dynamics (FMD), and others. It 
is believed that microscopic models not contain 
adjustable parameters. However, they are based on 
the nucleon-nucleon potentials, which, in turn, are 
fitted according to the elastic NN – scattering in a 
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wide range of energies, so there are parameters a 
lot. 

At the same time almost all the model approaches 
are based exactly on the data on the shell structure of 
atomic nuclei, as on the comparative, which are 
considered at the present time as the classic ones and 
obtained in the framework of the shell model (SM), 
which has only one oscillator parameter r0. 

For the halo-states the radial functions that 
characterize the distribution of the probability 
density, can be divided into internal and external 
conventional parts. The first is a model-depending, 
and the second asymptotic one is model-independent. 
The last one determines the mean square rms size of 
the nuclear system, as well as so-called asymptotic 
normalization coefficient (ANC), which can be 
measured experimentally [10-11]. All models 
somehow have to "converge" in the section point, call 
it a matching radius rm of these two areas. Thus, this 
is the main task to identify and substantiate the value 
of the rm radius. 

Present paper reports on the modification of 
oscillatory wave functions for low-lying 2s-, 2d-
excited states with 1/ 2 , 3 / 2 , 5 / 2J      of 13 C  
nucleus. To construct the modified functions we have 
used the matching procedure of oscillatory wave 
functions with corresponding Whittaker functions.  

In this context, the lower bound of the asymptotic 
region rm is defined, and it allows to answer a 
question about a pronounced halo, skin- or normal 
structure of these states. The advantage of using the 
shell model is that almost all the calculations can be 
carried out analytically. 

 
Modification procedure for the oscillator 

radial wave functions  
 
We are basing on the fundamental postulate of 

nonrelativistic quantum mechanics telling that 
functions to be regarded as wave functions (WF) 
should be square integrated, continuous, 
unambiguous, and final.  

Assume the potential in Schrodinger radial 
equation is defined in two space intervals 0 mr r   
and mr r   . Such a division is conventional, and 
depending on the properties of the treating 
microsystem may consist of more than two intervals. 
Let us restricted by one transition point.  

The matching radius rm we can find 
unambiguously from the continuity condition  
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Here u1(r) is any model function that should be 

modified providing the correct extended asymptotic 
behavior by some appropriate analytical u2(r) 
function. As u1(r) the shell model radial oscillator 
WF have been used 1( )= ( )nu r R r  for the state with 
main quantum number n  and orbital momentum  . 
For 2 ( )u r  various functions with exponential 
asymptotic at r   may be used. Here we are 
taking 0, ( )W z  Whittaker functions [12] as 2 ( )u r  
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where z = 2k0r – dimensionless variable, k0 – wave 
number. Factor nC   is asymptotic normalization 
coefficient. 

To operate with functions of one and the same 
dimension expression (2) should be rewritten as the 
following  

2 0,( ) ( )nu r C r   , 
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Therefore, the continuity condition (1) may be 
represented as equation of type  
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and the corresponding real roots define the matching 
radius rm. The solutions may be found analytically or 
numerically. To find asymptotic constant nC   
equation (1a) is used 
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Basing on the obtained values of rm and nC  , the 

modified radial channel functions are now defined as 
following 
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The modified functions ( )mod
nR r  should be 

normalized on to unit according the standard 
procedure  

 
2

2 mod 2

0

1nN R r dr


  .                    (7) 

This expression has the explicit form while taking 
definition (6) into account: 
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To continue our notations let us introduce I1 and 
I2 for the first and second integrals in (8) respectively, 
then the normalizing constant N is  

2
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Finally the normalized modified radial function 

is defined as ( )= ( )mod mod
n nR r N R r 
 , or taking into 

account (6) one arrives 
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It is formal to somewhat extent, but it makes 

obvious that all relations for obtaining of matching 
radius rm and ANC nC   preserve.  

To characterize the probability density in interior 
and exterior regions it is natural to introduce the 
corresponding weights  
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there relative probabilities Pin and Pout will be given 
in %. 

For completeness let us present the analytical 
expression for the Whittaker functions (3) obtained 
for the special case of zero Coulomb potential  
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Modified functions in space representation 
 
Here we are giving the results of the calculations 

for the modified radial WF of the low-lying excited 
states Jπ = 1/2+, 3/2+ and 5/2+ of positive parity π with 
total momentum J in 13C nucleus corresponding to 

the 4 8 1(2s 1d)s p   configuration with 12C as a core 
and a valence neutron in 2s-1d shell. The choice of 
these states is due to the fact that they are the real 
candidates for the manifestation of skin or halo 
structure on grounds such as large rms radii rms, small 
binding energy of the valence neutron 2 2

0= / 2k  . 
For the first excited state Jπ = 1/2+ with excitation 

energy Eexc=3,089 MeV oscillator 
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For the other Jπ = 5/2+ and 3/2+ states with the 
excitation energies excE =3,854 and 7,67 MeV 

 
2

2
0

2
2

2 7/21/4
0

4
15

r
r

d
rR r e

r



   radial function was 

employed.  
Let us define how the appropriate parameters 

necessary for the modification procedure may be 
determined. 

Method №1 consider the parameter k0 to be 
known from the relation 2 2

0= / 2k  . Then using ρ0 
as the solution of equation (4) and relation ρ0 = k0rm, 
the matching radius rm may be found. Finally the 
oscillator parameter we can obtain from 0 01 /r k . 

Method №2 for the definition of oscillator 
parameter is basing on the known correlation for the 
3D harmonic oscillator 2 2

0 ( 3 / 2)r r n   , using the 
rms value rms the oscillator parameter r0 may be 
obtained. The matching radius rm is coming from the 
relation 0 0/mr r  .  

We obtained the numerical values: 
0 2, 474556   for R2s matching function as well as 
0 2,513260   in case of R2d. Table 1 is a summary of 

all obtained parameters with pointed above method 
in last column.  

The resulting modified functions in space 
representation have been expanded by Gaussian 
basis. In case of Jπ = 1/2+ state the expansion 
coefficients are given in table 2 for the corresponding 
function of the form  
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In case of Jπ = 5/2+ and 3/2+ states the 
corresponding expanded function is of the form  
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Corresponding expansion coefficients are given 
in tables 3 and 4.



44

Whittaker asymptotics of shell-model wave functions...                           Phys. Sci. Technol., Vol. 3 (No. 2), 2016: 41-48

Table 1 – Parameters of excited states J   1/2+, 5/2+, 3/2+ of 13C  
 

J   excE , MeV rmsr , fm mr , fm 0r , fm № 

1 / 2

 3,089 5,04 0,75  6,669 2,695 2 
8,604 3,477 1 

5/2+ 3,874 3,68 0,4  4,946 1,968 2 
11,393 4,533 1 

3/2+ 7,67 - 7,218 2,872 1 

 
Table 2 – Expansion coefficients for 1/2+ excited state of 13С corresponding data of Table 1  

 
i № 2 i  iB  №1 i  iB  
1 0.995675768D-02 -0.214390442D-01 0.779153573D-02 -0.157705075D-01 
2 0.336098351D-01 -0.189661409D+00 0.263009545D-01 -0.320160296D+00 
3 0.599294538D-01 -0.190958104D+00 0.468970417D-01 0.188133220D+01 
4 0.889974970D-01 0.464299511D+01 0.696438740D-01 -0.142428669D+02 
5 0.121524851D+00 -0.323408024D+02 0.950977468D-01 0.577866466D+02 
6 0.158690793D+00 0.104349783D+03 0.124181488D+00 -0.133732675D+03 
7 0.202296685D+00 -0.185342008D+03 0.158304731D+00 0.201189391D+03 
8 0.255142402D+00 0.204894845D+03 0.199658483D+00 -0.205576264D+03 
9 0.321792941D+00 -0.147094874D+03 0.251815026D+00 0.144536068D+03 

10 0.410216901D+00 0.688772842D+02 0.321010086D+00 -0.694744674D+02 
11 0.535673529D+00 -0.205394784D+02 0.419184595D+00 0.222793718D+02 
12 0.731454805D+00 0.368965561D+01 0.572390775D+00 -0.454905888D+01 
13 0.108623797D+01 -0.359689964D+00 0.850021890D+00 0.545615092D+00 
14 0.193686319D+01 0.155681470D-01 0.151566798D+01 -0.333966034D-01 
15 0.653803936D+01 -0.195974076D-03 0.511626062D+01 0.835301964D-03 

 
 

Table 3 – Expansion coefficients for 5/2+ excited state of 13С corresponding data of Table 1  
 

i №2 i  iD  №1 i  iD  

1 0.934423119D-02 0.193301166D-04 0.507316101D-02 0.153278531D-04 
2 0.282397165D-01 0.102243489D-02 0.171248624D-01 0.107571441D-02 
3 0.477749532D-01 -0.839234710D-02 0.305352182D-01 -0.293365722D-02 
4 0.684424019D-01 0.899360796D-01 0.453459496D-01 0.570832256D-01 
5 0.908476504D-01 -0.425774826D+00 0.619192670D-01 -0.242640999D+00 
6 0.115788434D+00 0.118540758D+01 0.808560348D-01 0.616231656D+00 
7 0.144383322D+00 -0.156836386D+01 0.103074082D+00 -0.103888477D+01 
8 0.178298554D+00 -0.991321547D-01 0.129999999D+00 0.120998646D+01 
9 0.220180378D+00 0.411323404D+01 0.163959740D+00 -0.988919594D+00 

10 0.274555699D+00 -0.670385983D+01 0.209013461D+00 0.567618348D+00 
11 0.349930621D+00 0.537336858D+01 0.272936045D+00 -0.226320361D+00 
12 0.464483627D+00 -0.243539615D+01 0.372690399D+00 0.613817482D-01 
13 0.665419299D+00 0.632727569D+00 0.553459300D+00 -0.110395726D-01 
14 0.112573289D+01 -0.935347961D-01 0.986869335D+00 0.132846869D-02 
15 0.340214046D+01 0.112954444D-01 0.333125777D+01 -0.177390635D-03 

 
 
 
 
 



45

N.A. Burkova et al.	                                                                          Phys. Sci. Technol., Vol. 3 (No. 2), 2016: 41-48

Table 4 –Expansion coefficients for 3 / 2  excited state of 13C  corresponding data of Table 1 
 

i №1 i  iD  i i  iD  
1 0.585738861D-02 0.118469219D-05 9 0.189305230D+00 0.107028918D+01 
2 0.197720856D-01 0.309624471D-03 10 0.241323519D+00 -0.114006343D+01 
3 0.352554628D-01 -0.523338692D-03 11 0.315127487D+00 0.713878510D+00 
4 0.523556906D-01 0.195186077D-01 12 0.430302230D+00 -0.278365868D+00 
5 0.714909714D-01 -0.737727901D-01 13 0.639015042D+00 0.682627507D-01 
6 0.933550533D-01 0.212603276D+00 14 0.113942317D+01 -0.108208117D-01 
7 0.119007646D+00 -0.110494484D+00 15 0.384621565D+01 0.184247221D-02 
8 0.150095869D+00 -0.452967220D+00    
 
 

Table 5 – Characteristics of radial modified wave functions 2 ( )mod
lR r  

 
J  , 2 ( )mod

lR r   mr , fm 2C   N outP , % 

1/2+, 2 ( )mod
sR r  6,669 0,278476 0,940277 24,9 

8,604 0,181369 0,967572 20,1 

5/2+, 2 ( )mod
dR r  4,946 3,759468 0,979647 15,7 

11,393 0,584071 0,958564 10,5 
3/2+, 2 ( )mod

dR r  7,218 0,584214 0,986567 10,8 

 
 
Table 5 is a short summary on the general 

characteristics of the obtained modified radial functions 
2 ( )mod

lR r . Let us pay attention to the probability of the 
localization of the valence neutron out of the mean 
square area of the core 12С given as outP (%). 
Comparison of these values make it possible to 
conclude that 1/2+ state is the halo one, but states 5/2+ 
and 3/2+ are likely belong to the skin structure states. 

 
Modified functions in impulse representation 
 
Due to the Heisenberg uncertainty relation 

"coordinate-momentum" all modifications of the 
wave functions at large distances must, first of all 
reflected in the momentum distributions for small 
values q. 

The corresponding analytical expressions for the 
oscillator and modified functions obtained on the 
base of (13) in impulse representation for the case 

1 / 2J    are: 
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For excited states 5/2+ and 3/2+ the analogue 

expressions for the oscillator and modified functions 
on the base of (14) have been obtained  
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It is natural to discuss the probability density 
constructed as squared functions (15)-(18) 

2
2 2( ) ( )l lq R q  . The results of calculations are 

given in Figures 1 – 3.
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Figure 1 – Impulse distributions for excited 1 / 2  state of 13 C : (а) – linear scale; (b) – logarithmic scale. Set №2: 
mod
2 ( )s q  – solid line, 2 ( )s q  – dash-dot; set №1: mod

2 ( )s q  – long dash, 2 ( )s q  – dots 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

Figure 2 – Impulse distributions for excited 5 / 2  state of 13 C . Set №2: mod
2 ( )d q  – solid line,  

2 ( )d q  – dash; set №1: 2 ( )d q  – dash-dot, mod
2 ( )d q  – dots 
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Figure 3 – Impulse distributions for excited 3 / 2  state of 13 C .  

mod
2 ( )d q  – solid line, 2 ( )d q  – dash 

 
 
As can be clearly seen from Figure 1, in fact, in 

the region of small momentum transfers 0q 
momentum distributions obtained for all functions 
differ drastically. Thus, our assumption is that this 
characteristic is sensitive to the modifications of the 
asymptotic behavior is fully confirmed. 

Figures 2 and 3 correspond the nodeless 
functions. They are exactly equal to zero at q = 0. 
Such momentum distributions are compared by a 
well-known characteristic of the width at half-of – 
height maximum Г . It is for the Г  values can be seen 
how wide or narrow impulse distributions, and, 
consequently, to draw conclusions about the 
asymptotic behavior of the length of the asymptotic 
in the coordinate representation. 

Conclusions 
 
Sufficiently general method of the modification of 

radial functions for the improving of the asymptotic 
behavior is presented. The coming ambiguities 
appearing while defining the oscillator parameters 
have been examined. The modified functions are 
presented as convenient expansion by Gaussian basis. 
The different versions of the modifications №1 and 2, 
as well as purely oscillator functions significantly 
distanced themselves in the momentum 
representation. To address the issue of choice of 
reliable functions it is necessary in the future to 
compare the obtained results with the available 
experimental data on elastic and inelastic form factors.
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