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We investigate the Schwinger effect for the gauge bosons in an unbroken non-Abelian gauge theory ( e.g. 
the gluons of QCD). For the simplicity the ���2� non-Abelian gauge theory is considered. We consider 
both constant“color electric" fields and “color magnetic" fields as backgrounds. As in the Abelian 
Schwinger effect we find there is production of “gluons" for the color electric field, but no particle 
production for the color magnetic field case. Since the non-Abelian gauge bosons are massless there is no 
exponential suppression of particle production due to the mass of the electron/positron that one finds in the 
Abelian Schwinger effect. Despite the lack of an exponential suppression of the gluon production rate due 
to the masslessness of the gluons, we find that the critical field strength is even larger in the non-Abelian 
case as compared to the Abelian case. The calculations for gluon production from a uniform chromoelectric 
field and from a uniform chromomagnetic field are made. This is the result of the confinement phenomenon 
on QCD.  
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Introduction 
 
The Schwinger effect [1, 2] is the creation of 

electron-positron pairs from a uniform electric field. 
The energy to create the pairs comes from energy of 
the electric field. Since the rest mass energy of the 
electron is large relative to the electric field energy 
density that one can achieve in the laboratory the 
Schwinger effect has not been observed 
experimentally in the form in which it was first 
calculated – a uniform background electric field 
producing electron-positron pairs. The reason for this 
is the probability per unit volume per unit time of 
creating ���� pairs is given by  

 
��������
���×���� � ������ exp �− ���

����
�,          (1) 

where � and � are the charge and mass of the 
electron/positron, ��� is the magnitude of the 
uniform electric field and � and ℏ have been set to 1. 
Since the electron/positron have a finite rest mass the 
exponential will suppress ���� production unless 
���

����
~1. If one takes ��

�

����
= 1, restores factors of � 

and ℏ then one finds the this uniform electric field 
magnitude is enormous – ��� = 1.4 × 10�� �������  or 

��� = 4.2 × 10�� ��  – well beyond the present 

ability to create in a laboratory. If electron/positrons 
were lighter, or massless, one would more readily be 
able to observe the electromagnetic Schwinger effect. 

While the electron/positron mass is non-zero 
there is a system where a charged particle is massless 
and thus the Schwinger effect should not have the 
exponential suppression found in the electromagnetic 
case. The is the case of gluons in quantum 
chromodynamics (QCD). Gluons are massless and 
carry color charge due to the non-Abelian nature of 
QCD. Thus we want to investigate the QCD version 
of the Schwinger effect whereby a constant 
background color “electric" field creates gluons. Of 
course due to color confinement one can not really 
make a constant color field over a macroscopic 
distance. However within QCD bound systems one 
might think of the quantum chromodynamic flux 
tubes that are postulated to bind quarks together into 
mesons/baryons as giving a uniform color electric 
and color magnetic fields inside the tubes. 

In this work we consider, for simplicity, the 
���2� non-Abelian gauge theory. This has almost all 
of the features of larger non-Abelian groups like 
����� but the details of the calculations are simpler 
and more transparent. Often in this work we will 
mention “gluons" or QCD which technically refer to 
the strong ����� gauge group, but we mean by this 
the ���2� toy model of the true ����� interaction. 
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Brief review of electric Schwinger effect 
 
In this section we will give a very brief overview 

of Schwinger’s method for calculating pair 
production in the case of Abelian electromagnetic 
fields. In the following section we will use this 
background to address pair production in a non-
Abelian color electric and color magnetic fields. In 

addition to the original articles on the Schwinger 
effect [1, 2] there are many good discussion of this 
method in the literature. A very small sample of these 
are found in references [3, 4, 5, 6]. We will follow 
most closely the pedagogical article [3]. 

To begin the vacuum to vacuum transition 
amplitude is given very generally by the  
expression

  
 

 ���(��� � ���) � � [��]exp�� � ����(�, ∂��)�,                                       (2) 
 

 
where � is some generic field, � [��] is a path 
integral over different field configurations, and 
�(�, ∂��) is the Lagrange density for the field �. 
The Lagrange density will lead to an equation of 
motion for the field �(�) in terms of some operator 
��. The field �(�) can be expanded as �(�) =
∑� ����(�) where ��(�) are eigenstates of the 
equation of motion given by  

 
 ���(�) = ����(�),                    (3) 
 

with �� being the eigenvalues. In terms of the 
operator � the vacuum to vacuum amplitude is 
���(��� � ���)� �����.

����  where the determinant of 
the operator can be written in terms the eigenvalues 
as ���� = ∏� ��. Using all this we can write out the 
results as  

 
1

���� = exp[− ln(����)] = 
 

= exp[−ln ∏� ��]  =                      (4) 
 

=  exp �− �
�

ln��� = exp[−��ln(�)]. 
 
 Next we use the representation of the logarithm 

as ln�� = − ��
�

���(����)
� �� to write the middle 

expression in(4) as  
 

��(ln�) = − ∑� ��
�

���(����)
� �� � �.         (5) 

 
Finally the vacuum to vacuum amplitude from (2) 

becomes  

���(��� � ���) � exp[−�].             (6) 
If � has a real part ( i.e. � = ��(�)) then one can 

square the amplitude to get the probability for pair 
production as  

p������� = (1 − exp[−2�]).               (7) 
 
This is the basic procedure which we will apply 

to the pair production of gluons in uniform color 
electric and color magnetic fields. However before 
moving on to this we give a few more details about 
the pair production of scalar particles of mass � and 
charge � in a uniform electric field. For a uniform 
electric field in the �-direction � = ���̂ the vector 
potential can be of the form �(�) = −����̂ or �(�) =
−���. (In the QCD case we will find a similar 
situation for the QCD potentials). For the time-
dependent vector potential, �(�) = −����̂, the 
operator in footnote 1 becomes  

 
� = ∂�� − (∂� − �����)� − ∂�� − ∂�� + ��.  (8) 
 
The eigenvalues connected with (8) are  
 

�� = ���(2� + 1) + ��� + 
+��� + ��, n = 0,1,2. . ..                 (9) 

  
Using this eigenvalues in (5) and performing the 

sum of the different pieces of �� yields  
 

� = −���� ����
���� ��

�
��
��

���[����]
���(�����),        (10) 

 
where � and � are the spatial and temporal size to 
“cube" inside which the system is quantized. The 
factor of � comes from doing a rotation to imaginary 
time and back ( i.e. � � ��). This time rotation also 
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involves the change ��� � ����. We will use the 
same procedure when we carry out the QCD version 
of this calculation. In order to have particle 
production � needs to have a real part which will 
occur if the integral in (10) has an imaginary part. The 
integral in (10) does have imaginary parts coming 

from the contour integrations involving the poles in 
the integrand at �� = �������. (The 1��� 
divergence in the integrand in (10) leads to an infinite 
imaginary part which is removed via renormalization 
[7]). Taking semi-circular deviations around each of 
the poles �� leads to a real part of � given by

  
 

 � = ��(�) = ��� ������

���� ∑����
(��)���

�� exp �− ����

����
� ≈ ��� ������

���� exp �− ���

����
�.               (11) 

 
 
Due to the exponential term the main contribution 

comes from � = 1 term in the sum. The result in (11) 
can be used to obtain the result in (1) by inserting it 
into (7) and dividing by (Vol × time)

  
 

��������
���×���� = �

���×���� (1 − ����) ≈ ������

���ℏ�� exp �− �����

����ℏ� = �������

���ℏ exp �− �����

����ℏ�,                    (12) 
 

 
where we have restored factors of ℏ and � and then 
written the result in terms of the fine structure 
constant ��� = ��

ℏ� ≈ �
���. We want to use (12) to 

determine p������� when the electric field is at the 
critical value ��� ≈ 1.4 × 10�� ����

��� . To do this we 
need some way to characterize what a “natural" value 
is for the volume and time in the denominator of (12). 
For the volume we take it to be the cube of the 
reduced Compton wave length of the electron ��� =
� ℏ

���� ≈ 5.7 × 10������. For the time we take the 

reduced Compton time ���� = ℏ
��� ≈ 1.3 ×

10������. Putting all these values together in (12) 
yields  
 

 p������� ≈ 0.015 .                  (13) 
 
In the next section we will calculate the 

equivalent result to equation (12) but for gluons 
produced from uniform chromoelectric fields and 
uniform chromomagnetic fields. We will set the 
probability of gluon production (i.e. prob��) to the 
same value as that of ���� production from (13) for 
the critical electric field, ���. In this way we will 
arrive at the critical chromoelectric/chromomagnetic 
field strength to produce gluons. The initial 
expectation might be that the critical color field 
strength might be smaller since gluons are massless 
so there will be no exponential suppression as occurs 
due to the rest mass of the electron for the  
QED case. 

Schwinger effect for uniform color electric 
field and uniform color magnetic field 

 
To calculate the production rate for gluons from 

uniform chromoelectric and chromomagnetic fields 
we follow reference [8] and place gluon field 
excitations in a fixed background field. For the two 
background fields we take a uniform chromoelectric 
field and uniform chromomagnetic field. These 
calculations are rather involved and we put the details 
in appendix 1 for the uniform chromoelectric field 
and Appendix 2 for the uniform chromomagnetic 
field. The result for the production rate for gluons in 
a uniform chromoelectric field is given by equation 
(42) as  

 
� ≈ 0.001�7 × ��� �����

���� .                (14) 
 
Using this result from (14) in (7) we obtain the 

probability for SU(2) gluon creation per unit volume 
and unit time  

 
p�����

��� × ���� = 1
��� × ���� (1 − ����) ≈ 

 

≈ �.����������

���ℏ�� = �.������������

���ℏ .          (15) 
 
In the last step we have restored factors of ℏ and 

� and introduced the QCD fine structure constant 
���� = ��

ℏ�. We will take ���� ≈ 1 so that we are in 
non-perturbative regime. For the present case we take 
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the distance scale to be 10�����. This is one order 
of magnitude larger than the typical strong 
interaction bound state size of 1f����. Thus is the 
volume factor in (15) we have V�� = 10������ and 
for the time factor we take t��� = �����

�×���� = 3.3 ×
10���s��. Finally we take the value for the 
probability of gluon production, prob�� at the 
critical chromoelectric field magnitude to be the 
same as that for the electromagnetic case as given in 
(13) namely prob�� ≈ 0.015, using these 
assumptions in (15) we can calculate the value of the 
critical chromoelectric field magnitude as  

 
�� ≈ 2.5 × 10�� ����

��� .                  (16) 
 
This is then three orders of magnitude larger than 

the ��� critical field value of ��� ≈ 1.4 ×
10�� ����

��� . Thus although gluons are massless (and 
thus there is no exponential suppression factor as in 
the electromagnetic case due to the mass of the 
electron) this does not lower the critical 
chromoelectric field value, and in fact we find the 
critical field value for QCD is three orders of 
magnitude larger than in the ��� case. This, at first 
sight, surprising result arises from the fact that QCD 
has a confinement scale in the range of 1fermi =
10���cm. This distance is smaller than the Compton 
wave length of the electron which we used to set the 
volume and time in the electromagnetic case as 

V�� = � ℏ
���� ≈ 5.7 × 10���cm� and time = ℏ

��� ≈
1.3 × 10���sec respectively. In the QCD case we 
overestimated the distance scale as 10 times larger 
than 1fermi = 10���cm and also used this to obtain 
the characteristic time for the QCD case. Even though 
we (slightly) overestimated the QCD distance and 
time scales (which would by (15) would be favorable 
toward to decreasing the critical QCD field strength) 
we nevertheless found that the critical QCD field 
strength was larger than the critical ��� critical field 
strength. Even if we had used (without justification) 
the electron Compton wave length and associated 
Compton time in (15) this would give a QCD critical 
field strength of ��~10�� ����

���   i.e. the same as for 
���. Thus the masslessness of the gluons does not 
lead to a lower critical field strength relative to what 
is found in the canonical Schwinger mechanism case. 

 
 
 

Conclusions 
 
We presented the Schwinger effect for SU(2) 

gluons. We did this since gluons being massless we 
expect this effect to be more important than standard 
Schwinger effect which is exponentially suppressed 
due to electron/positron rest mass. The calculation 
details for gluon production from a uniform 
chromoelectric field and from a uniform 
chromomagnetic field are found in Appendix A and 
B respectively. As in the electromagnetic case a 
chromoelectric field will produce gluons while the 
chromomagnetic field does not. 

The motivation for investigating gluon 
production, as opposed to the production of quarks, 
was that since gluons are massless there will not be 
an exponential suppression due to the mass of the 
quarks that one finds in the electromagnetic case due 
to the mass of the electron ( i.e. the last exponential 
term in (1)). However, due to confinement the natural 
length scales and time scale for the QCD case were 
several orders of magnitude smaller than the similar 
scales for the electromagnetic case which were set to 
the reduced Compton length of the electron and the 
associated time. This in turn made the factor Vol ×
time smaller for the QCD case as compared to the 
��� case which in turn, given the expression for the 
probability for production per unit volume per unit 
time in (15) gave a larger magnitude for the 
chromoelectric field for producing gluons as 
compared to the magnitude of the electric field for 
producing electrons and positrons. 
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Appendix I: Uniform Color Electric Field 

Calculation  
To have a constant color electric field in the �̂ =

3 spatial direction and in the � = 3 color direction,  
 

��� � ��� = ���� = ∂���� − 
− ∂���� � ����������� = ���̂,             (17) 

  
there are two gauge choices one can make for the 
potential  
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(�)��� = ������������(��)��� = −���������.  (18) 
 
For the calculation in this appendix we use the (�) 

form of the potential. Inserting form (�) from (18) 
into (17) does give ��� → ��� = ∂���� = ���̂. We 

now take the potential (�) from (18) as a background 
potential ( i.e. ��(�)�) and we consider small variation 
��� around this background (the background nature of 
the potential is indicated by the superscript (0)). In 
this way the QCD action can be written as

   
 

��������������������������� ���� = �
�∂���(�)� − ∂���(�)�� + �∂���� − ∂�����
+����� ���(�)� + ���� ���(�)� + ����

�
�

. (19) 

 
We now run through the color indices � = 1�2�� 

and insert the explcit form of the background 
potential ��(�)� = ������. The only non-zero values 

of ∂���(�)� − ∂���(�)� + �������(�)���(�)� are when 
� = 0 and � = � or vice versa, each of which 
contribute a term of ��.  

 
���� ���� = �∂���� − ∂���� + �����(��� + ������) − ���� + ����������� 

 +�∂���� − ∂���� + ������ + ���������� − ���(��� + ������)��� (20) 
+�∂���� − ∂���� + �������� − ��������� 

 +2��� − 2���∂���� − ∂���� + �������� − ��������������� − ������� 
 
 
We now expand the above expression to 2nd order 

in the ��� which gives  
 

���� ���� ≈ 
≈ �∂���� − ∂���� − ����������� − ��������� 

+�∂���� − ∂���� − ����������� − ���������  (21) 
+�∂���� − ∂������ + 2��� − 

���[∂���� − ∂���� + �(������ − ������)]. 
 
We now require that at spatial and temporal 

infinity the variation of the potential goes to zero 
���(�� → ±∞) = 0 and ���(�� → ±∞) = 0. This 

causes the source terms for ���  in the last term to 
vanish by partial integration. Note that �∂���� −
∂������ is a free Lagrange density, so it is not of 
interest and can be dropped.  

 
���� ���� = 

= �∂���� − ∂���� − ����������� − ��������� 
+�∂���� − ∂���� − ����������� − ���������  (22) 

+2��� − ����(������ − ������). 
 
We now re-write this using complex potential 

forms as
  
 

 ���� ���� = � ��(��� + ����) − ������ + �����
−�����(��� − ����)��� − ���� − ���������

�
�
  (23) 

+2��� − �2���[(��� + ����)(��� − ����) − (��� + ����)(��� − ����)]. 
 

 
We now replace ���  and ���  by defining the 

following complex potetnials  
 

�� =
1
√2 ���

� + ���������� 
��� = �

√� ���
� − ������                    (24) 

In terms of these new, complex potentials 
���� ���� becomes  

 
���� ���� = �√2 ∂��� − √2∂��� − �√2���������

+ �√2����������
� + 2��� − 

−�2����2��
��� − 2��

����.          (25) 
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This finally leads to the following Lagrange 

density for gluons in the background potential of a 
uniform color electric field  

 ℒ = −�
� ���� ���� (26) 

= −12 ��∂� − �����������

− (∂� − ��������)���� 

−�������
��� − 2��

���� −
1
2��

�. 
 
This Lagrange density leads to the following 

equation of motion  

 
(∂� − ��������)��∂� − �����������

− (∂� − ��������)��� − 
−����(����� − �����) = 0.       (27) 

 
Choosing the background gauge condition (∂� −

��������)�� = 0 simplifies (27) to 
 
(∂� − ��������)�∂� − ����������� = 

−2����(����� −�����).           (28) 
 
The above equation can be written in matrix form 

as
 
 

 (∂� − ��������)��� − 2��� �
0 0 0 −�
0 0 0 0
0 0 0 0
� 0 0 0

��� = 0. (29) 

 
 
The four eigenvalues for this matrix are ±1 and a 

double eigenvalue of zero. The zero eigenvalues are 
excluded by our chosen gauge condition so for now 
we consider just the eigenvalues ±1. Thus (29) 
becomes 

[(∂� − ��������)��� − 2���(±1)]�� = 0. (30) 
 
Recalling that we are using the metric signature 

(+,−,−,−) (30) can be expanded as

  

 � ����� −
��
����

− ��
����

+ �� �
���

+ �����
� � 2������ = 0. (31) 

 
Next we Fourier transform (31) to ���(�, ��, ��, ��) with the result 
 

 � ����� + ��� + ��� + ����� � ��
���

+ ��� ± 2������� = 0. (32) 

 
Now making the substitution �� = ��

���
+ � (for 

which one has ��� =
�
���) and then performing  

a rotaion to imaginary time, �� → −��, �� → −��� 
we arrive at 

 
 �− ��

��� + �������� + ��� + ��� ± 2�������� = 0. (33) 
 
 
The first two terms in (33) correspond to a 

harmonic oscillator with frequency � = ���, which 
has eigenvalues given by − �

��� + ������� → 2 �� +
�
�� ���. With this (33) becomes �(2� + 1)��� +
��� + ��� ± �������� = 0. From this equation we can 
read of the eigenvalues as  

�� = (2� + 1)��� + ��� + ��� ± 2����   .(34) 
 
Note that �� is a combination of discrete ( i.e. 

(2� + 1)���) and continuous ( i.e. ��� + ���) parts. 
Substituting these eigenvalues from (34) into (5) we 
find that � becomes
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 � = −∑� ���
��
� exp�−[(�� � 1)��� � ��� � ��� � �����]��  . (35) 

 
We take our system to be quantized in a cubical 

spatial volume with sides of length � and over a total 
(imaginary) interaction time � = −�� which then 
turns (35) into  
 

� = −� ����
���
(��) � �

�
��

���
(��) � �

����
�

���
(��) ∑���� �

�
�

��
� exp�−[(�� � 1)��� � ��� � ��� � �����]��. (36) 

 
The �� and �� integrations related to the 

momentum in the free directions and are simple 

Gaussian integrals, which give two factors of ��
�. The 

integration in the �� direction is related to the 

momentum in the � direction which is the direction 
of the chromoelectric field. Thus as in [3] this 
integration is constrained to the range � < �� <
����. Performing the ��, ��, �� integrations  
gives

  
 

 � = −��� ������ ∑���� �
�
�

��
�� exp�−[(�� � 1)��� � �����]��. (37) 

 
 
We note that ∑���� ��(����)���� = �

�
�

����(����)
 

which then transforms (37) into  
 

� = −��� ���
���� �

�
�

��
��

��������
����(����)

  .         (38) 
 
We now return to real time via the rotation � �

�� which also involves changing the magnitude of the 
chromoelectric field as �� � ���. This gives  

 

� = −���� ���
���� �

�
�

��
��

�������
���(����)

  .        (39) 
 
Equation (39) is now at the point in the 

electromagnetic calculation given by equation (10), 
but now the exponential factor involving the electron 
mass (exp[−���]) is replaced by an exponential 
suppression involving the field strength (�������). 
As before if � has a real part ( i.e. if the integral in 
(39) has an imaginary contribution) there will be 
particle production. As in the case of the 
electromagnetic integral in (10) the integral in (39) 
does have an imaginary contribution coming from the 
poles of �

���(����)
 whihc are located at �� = ��

���
, 

where � is an integer. As before we ignore the 
singularity at � = �. The integration contours are 
infinitesimal semicircular in the upper half plane and 
from (39) this gives

  
 

� = Re(�) = −���� ���
1����

�

���
�
����

����

��
��

�������
sin(����) = 

= −���� ���
���� ∑���� �

����
����

��
��

�������
���(�����)���(����)

.                                         (40) 
 
 
In the last step we have expanded sin(����) 

around the poles at ��. From the Residue theorem, the 
poles of the integral in (40) give −�� �
∑ Res(function), where the sum is over the residue 
of the integrand. The result is  

 

� = Re(�) = −��� 1
1���

�

���

��������
��� cos(�����)

= 

= ��� �����
���� ∑���� (−1)���

�����
�� ,         (41) 
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where in the last step we have substitute in the poles 
�� = ��

���
 and simplify. The (−1)��� comes from 

−���(��). The ���� choice in (41) leads to a 
divergent � so we take the ���� choice in (41) which 
leads to  

 

� = ��� �
����

1����
�

���
(−1)��� �

����

�� ≈ 

≈ 0.00187 � ��� �����
����.                 (42) 

  
In the last step we have carried out the sum 

numerically with the result ∑���� (−1)��� �
����

�� ≈
0.00187. 

Calculations similar to the above were carried out 
in [9, 10, 11] for gluon production in a constant 
��(3) color electric field. In these works the 
integration over the transverse momentum was not 
carried out, but if one does carry out the integration 
of the transverse momentum of the results in [9, 10, 
11] one finds that our result for � in (42) is consistent 
with these previous results. In particular there is no 

mass suppression (as expected) and the production 
rate is proportional to ����� 

Appendix II: Uniform Color Magnetic Field 
Calculation  

In this appendix we show that, unlike the uniform 
color electric field of appendix I, a uniform color 
magnetic field does not produce gluons. This is 
similar to what occurs in the electromagnetic 
Schwinger effect – a uniform magnetic field does not 
produce electrons/positrons. 

A constant color magnetic field in the �̂ = 3 
spatial direction and in the � = 3 color direction,  

 
��� � ��� = ���� = ∂���� − ∂���� + 

+����������� = ���̂,                   (43) 
  

can be obtained by the potential  
 

��� = −����������.                      (44) 
  
With the potential in (44) we perform a long 

calculation that is similar to the one for the constant 
color electric field, which leads to

  
 

 (∂� − ��������)��� − 2��� �
0 0 0 0
0 0 � 0
0 −� 0 0
0 0 0 0

��� = 0. (45) 

 
which is the color magnetic version of (29). Expanding (45) out we arrive at the color magnetic version (31) 
which leads to  

 

 � ����� −
��
��� −

��
��� � 2��� − �� �

�� + �����
���� = 0. (46) 

  
Next we Fourier transform (46) to ���(�, ��, ��, ��) gives the color magnetic version of (32)  
 

 �−�� + ��� � 2��� − ��
��� + ����� �� + ��

���
������ = 0. (47) 

 

 Making the change of variable � = � + ��
���

 this 
becomes  

 
�−�� + ��� � 2��� − ��

��� + ����������� = 0. (48) 
 
The − ��

��� + ������ part of the above equation 
is the equation for a simple harmonic oscillator which 

has eignevalues 2 �� + �
�� ���. Substituting this 

eigenvalue into (48) leads to  
 

�−�� + ��� � 2��� + 2 �� + �
�� ������� = 0. (49) 

 
We now rotate to imaginary time (Euclidean) as 

� � −�� and in conjunction with this we rotate the 
energy as � �= −��. This turns (49) into  
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��� + ��� � 2��� + 2 �� + �
�� ������� = 0. (50) 

  
The eigenvalues for the system can then be 

written out as  
 

�� = �� + ��� � 2��� + 2 �� + �
�� ���.    (51) 

  
Now substituting (51) into (5) yields � for this 

case as  
 

� = −∑� ���
��
� exp�−[�� + ��� + �2� + ����� � 2���]��.                                (52) 

 
 Recalling that we are quantizing in a cube with 

sides length � and over a total (imaginary) interaction 
time � = −�� transforms (52) into  

 
 

� = −� ����
��
���� � �

�
��

���
���� ��

���
�� ∑���� ���

��
� exp�−[�� + ��� + �2� + ����� � 2���]��.       (53) 

 

 The � and �� integrations are simple Gaussian integrals that give two factors of ��
�. Thus (53) simplifies to  

 
� = −��� ������ ∑���� �

�
�

��
�� exp�−[�2� + ����� � 2���]��.                                (54) 

 
 We now use the geometric series 

∑���� ����������� = �
�

�
��������� to write (54) as  

 
� = −��� ���

���� �
�
�

��
��

�������
����������

  .            (55) 
 
 We now return to real time via the rotation � � ��.  
 

� = −���� ���
���� �

�
�

��
��

�������
����������

  .          (56) 
  
In contrast to the color electric case of the the 

previous appendix where the rotation back to real 
time, � � ��, was accompanied by a rotation of the 

electric field amplitude, �� � ���, here the rotation 
back to real time does not lead to a change in the color 
magnetic field amplitude. In comparing (56) with 
(39) one finds that (56) does not have the series of 
poles at �� = ������ that are found in (39). 
Therefore the integral in (56) does not have any 
imaginary contributions coming from the residue 
theorem as was the case for the integral in (39). Thus 
from (56) the real part of � is zero so ����� = � = 0. 
Thus in the case of a uniform color magnetic field 
there is no particle production as is expected form the 
electromagnetic case where one finds that a constant 
magnetic field does not produce electron/positron 
pairs.
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