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Generalized pair potential between charged particles in 
densesemiclassical plasma 
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The pair interaction potential of charged particles in a dense two-component plasmas, which takes into account 
quantum-mechanical effects, was obtained on the basis of the comparison of the quantum-mechanical Slater 
sum with the classical Boltzmann factor. The equations issued from this comparison were solved numerically 
and the spline approximation of these numerical results gives the interpolation formula for the pair interaction 
potential. The potential is valid in the temperature region of 104 < K < T < 108K and density region of 

21 3 24 310 10 .cm n cm   It was shown that at high temperatures and densities the results have a good agreement 
with well known models of Deutsch and Kelbg. 
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1  Introduction 

The importance of the plasma state studying is 
caused by the fundamental interest in understanding of 
nature and importance of practical use. It is well 
known that the source of energy in stars is the thermo-
nuclear reactions. An idea of the controlled thermo-
nuclear fusion has led to the intensive research in the 
field of plasma physics. Present time the laboratory 
plasmas are investigated in a wide region of tempera-
tures and pressures, from low-temperature gas-
discharge plasma up to the dense plasma obtained by 
the laser beam [1], [2]. Some of the important reasons 
of a great interest to the investigation of the dense 
plasma properties are discussed in works [3-5]. 

According to the Big Bang theory all chemical 
elements were formed from the hydrogen atoms at the 
state of the high temperature plasma. Expanding plasma 
cooled and formed stars and planets. The hydrogen 
plasma consists of protons and electrons interacting by 
the Coulomb's law. Due to  the quantum effects a devia-
tion from the classical Coulomb's law for two point-like 
charges is observed at small distances. This deviation is 
caused by the Heisenberg uncertainty principle and the 
Pauli exclusion principle for fermions. Ebeling and co-
workers reached significant progress on this problem 
[6-10]. High-temperature degenerate dense plasma was 
studied in detail by Deutsch. He suggested the pseudo-
potential which correctly takes into account the quan-
tum effects of diffraction at high densities and tempera-
tures  T > 106 K [11-14]. 

In work [15] a pair interaction potential for the 
system of two particles was obtained by taking into 
account the quantum effects in the region from high 
temperatures 108K to low temperatures of a few tens 
of Kelvin in terms of the generalization of the Kelbg 
potential. A method of calculation of semiclassical 
potential which takes into account the effect of density 
is given in work [16]. 

In papers [17-20] the quantum effects, influencing 
on the interacting potential, were considered. 

In works [21, 22] the dynamic and static proper-
ties of plasma were investigated with taking into ac-
count quantum effects. 

It is known that quantum-mechanical analogue of 
the classical Boltzmann factor, which consists of the 
pair interaction potential, is the Slater sum. For N-
particle system: 
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Nv  is a number of particles of the v-th sort, which 

have a mass m  and thermal wavelength v . The wave 
function is a properly symmetrized eigenfunction for 
the entire macroscopic system with eigenvalue En, 
where n  represents a complete set of quantum num-
bers. From equality of the Boltzmann factor and Slater 
sum one can obtain the semiclassical interaction po-
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tential. In Part 2 the equations issued from this com-
parison are presented. The results of their numerical 
solution and spline approximation are given in Part 3. 
The interpolation formula for the pair interaction po-
tential are presented there.  

The first step in calculation of the Slater sum is a 
choice of the wave function. For the determination of 
the wave function the TF approximation  was used at 
the considered temperatures. 

The equations for the Fourier transforms of the 
semiclassical potentials ( )abu k  of two component 
plasma have the form: 
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. 
The aby  was obtained by the following formula: 
 

 (2)/ 3 / 2 1/ 4ab ab aby X S u u     , (6) 
 
where for two-particle system 
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It should be noted that in this method the influence 

of the surrounding plasma on the diffraction effect 
between two particles is taken into account. 

 
2 Semiclassical potential 

 
The equations (3-5) were solved numerically us-

ing the boundary conditions: 
 

 0 2 24 /ab a bu z z e x   (9) 
 
Calculations were performed at temperatures 

410T K  and densities 21 310n cm . Using these nu-
merical values of the interaction potentials for the con-
sidered range of temperatures and densities following 
interpolation formula was obtained.  
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where / 4ab ab Bm k T   thermal wave length, abm 

/ ( )a b a bm m m m  ,  1/33 / 4a n  is an average inter-
particle distance and b = 0.033. 

In the limitT   potential (10) coincides with 
the Deutsch potential [11]: 
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In figures 1-3 the semiclassical pair interaction 

potential (10) and numerical data obtained by solv-
ing the equations (3-5) for several temperatures are 
presented. One can see that at increase in tempera-
ture potential (10) tends to the Deutsch potential. In 
figures 4-7, where 2 /e a  , it is shown that the 
many particles effect on the diffraction term is sig-
nificant in the dense plasma. 

The potential (10) can be used for plasma at low 
temperature 410T K  if density is enough high and 
plasma is fully ionized due to the Mott transition. 
For electron-electron pair the difference in magni-
tude between potentials (11) and (10) when 0r 
for the different values of density and temperature is 
shown in the figure 8. In the figure 9 the same dif-
ference in magnitude when 0r  for the different 
values of the density parameter and the coupling 
parameter is shown. It is seen that the difference in 
magnitude is larger for the dense nonideal plas-
mas.The values of the potential (10) at short dis-
tance ( 0r  ) for the different values of density and 
temperature are shown in the figure 10. 

Tables 1-5 show the comparison of the obtained 
results with the data presented in the work of Barker 
[24]. These tables show that the density-effects play 
a significant role when rs < 3. With increase in den-
sity parameter the pseudopotential (10) approaches 
to the effective potential of Barker, which takes into 
account the effect of diffraction for two isolated 
charged particles. 
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Figure 1 – Proton-electron pair interaction poten-
tial. Curve 1 is the  Deutschpotential (11), curve 2 is 
the semiclassical potential (10),3 is thenumerical data. 
R = r/a0, 63.16 10T K  . 
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Figure 2 – Proton-electron pair interaction poten-

tial. Curve 1 is the Deutsch potential (11), curve 2 is 
the semiclassical potential (10), 3 is  the numerical 
data. Where R = r/a0, 53.5 10T K   
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Figure 3 – Proton-electron pair interaction potential. 
Curve 1 is the Deutsch  potential (11), curve 2 is the  
semiclassical potential (10),  3 is the numerical  data. 

Where R = r/a0, 52.1 10T K   
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Figure 4 – Proton-electron pair interaction potential. Curve 1 
is the Deutsch  potential (11), curve 2 is the semiclassical 

potential (10),3 is the Coulomb potential. Where R = r/a0, Г = 
2, rs=1. 
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Figure 5 – Proton-electron pair interaction potential. Curve 1 
is the  Deutsch  potential (11), curve 2 is the semiclassical 

potential (10), 3 is the Coulomb potential. WhereR = r/a0, Г = 
2, rs=3. 
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Figure 6 – Proton-electron pair interaction potential. Curve 1 
is the Deutsch potential (11), curve 2 is the semiclassical po-
tential (10),  3 is the Coulomb potential. Where R = r/a0, Г = 

2, rs=9. 
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Figure 7 – Proton-electron pair interaction potential. 
Curve 1 is the  Deutsch  potential (11), curve 2 is the 

semiclassical potential (10),  3 is the Coulomb potential. 
Where R = r/a0, Г = 2, rs=13. 

 
 

Figure 8 – The  n-T profile of the difference in magni-
tudes (in the unit of Rydberg) of potentials (11) and (10) 

when 0r  . 

Figure 9 – The rs=Г profile of the difference in magni-
tudes (in the unit of kBT) of potentials (11) and (10) when 

0r  . 
 
 

Figure 10 – The n-T profile of the magnitude of the po-
tential (10) (in the unit of Rydberg) when 0r  . 

 
 

Table 1 –  The effective interaction potential of the proton-electron in unit of 1/ Bk T   at temperature 45 10T K   , 
for several values of Sr . Here kerBar

epu  are results of Barker and kerBar
ep ep epu u u   . 

 
( )Br a  1Sr

epu   3Sr
epu   10Sr

epu   kerBar
epu  1Sr

epu   3Sr
epu   10Sr

epu   
0.0 -1.2868 -1.7988 -1.9777 -2.3852 1.0984 0.5864 0.4075 
0.5 -1.0132 -1.4124 -1.5572 -2.0769 1.0637 0.6605 0.5167 
1.0 -0.8143 -1.1383 -1.2515 -1.7630 0.9487 0.6247 0.5115 
1.5 -0.6674 -0.9330 -1.0258 -1.4581 0.7907 0.5251 0.4323 
2.0 -0.5573 -0.7790 -0.8565 -1.1747 0.6174 0.3957 0.3182 
2.5 -0.4734 -0.6618 -0.7276 -0.9316 0.4582 0.2698 0.204 
3.0 -0.4084 -0.5710 -0.6278 -0.7442 0.3358 0.1732 0.1164 
3.5 -0.3574 -0.4995 -0.5492 -0.6119 0.2545 0.1123 0.0627 
4.0 -0.3165 -0.4425 -0.4865 -0.5208 0.2043 0.0783 0.0343 
4.5 -0.2835 -0.3962 -0.4357 -0.4558 0.1723 0.0596 0.0201 
5.0 -0.2562 -0.3582 -0.3938 -0.4067 0.1505 0.0485 0.0129 
5.5 -0.2336 -0.3265 -0.3590 -0.3679 0.1343 0.0414 0.0089 
6.0 -0.2145 -0.2998 -0.3296 -0.3359 0.1214 0.0063 0.0063 
6.5 -0.1981 -0.2770 -0.3046 -0.3098 0.1117 0.0328 0.0052 
7.0 -0.1841 -0.2574 -0.2830 -0.2871 0.103 0.0041 0.0041 
7.5 -0.1720 -0.2403 -0.2642 -0.2677 0.0957 0.0027 0.0035 
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Table 2 –  The effective interaction potential of the proton-electron in unit of 1/ Bk T   at temperature 510T K  , for 
several values of Sr  . Here kerBar

epu  are results of Barker and kerBar
ep ep epu u u   .  

 
( )Br a  1Sr

epu   3Sr
epu   10Sr

epu   kerBar
epu  1Sr

epu   3Sr
epu   10Sr

epu   

0,0 -2.0007 -2.6760 -2.8109 -2.8109 0.8039 0.1349 0.0000 
0,5 -1.4355 -1.9200 -2.0170 -2.5566 1.1211 0.6366 0.5396 
1,0 -1.0723 -1.4348 -1.5065 -1.9573 0.885 0.5225 0.4508 
1,5 -0.8316 -1.1123 -1.1683 -1.4448 0.6132 0.3325 0.2765 
2,0 -0.6670 -0.8920 -0.9370 -1.0714 0.4044 0.1794 0.1344 
2,5 -0.5507 -0.7365 -0.7736 -0.8321 0.2814 0.0956 0.0585 
3,0 -0.4660 -0.6232 -0.6546 -0.6806 0.2146 0.0574 0.026 
3,5 -0.4023 -0.5381 -0.5652 -0.5782 0.1759 0.0411 0.013 
4,0 -0.3533 -0.4726 -0.4964 -0.5037 0.1504 0.0311 0.0073 
4,5 -0.3146 -0.4208 -0.4420 -0.4466 0.132 0.0258 0.0046 
5,0 -0.2834 -0.3791 -0.3982 -0.4012 0.1178 0.0221 0.003 
 
 

Table 3 –  The effective interaction potential of the proton-electron in unit of 1/ Bk T   at temperature 55 10T K   , 
for several values of Sr  . Here kerBar

epu  are results of Barker and kerBar
ep ep epu u u   . 

 
( )Br a  1Sr

epu   3Sr
epu   10Sr

epu   kerBar
epu  1Sr

epu   3Sr
epu   10Sr

epu   

0,0 -5.7445 -6.2470 -6.3107 -6.3066 0.5621 0.0596 0.0041 
0,5 -2.8900 -3.1429 -3.1748 -3.7160 0.8260 0.5731 0.5412 
1,0 -1.7435 -1.8961 -1.9153 -2.0357 0.2922 0.1397 0.1204 
1,5 -1.2034 -1.3087 -1.3220 -1.3416 0.1382 0.0328 0.0196 
2,0 -0.9100 -0.9884 -0.9985 -1.0026 0.0926 0.0142 0.0041 
2,5 -0.7300 -0.7919 -0.8000 -0.8011 0.0711 0.0092 0.0011 
 
 

Table 4 –  The effective interaction potential of the proton-electron in unit of 1/ Bk T   at temperature 610T K  , for 
several values of Sr  . Here kerBar

epu  are results of Barker and kerBar
ep ep epu u u   .  

 
)( Bar  

1Sr
epu  3Sr

epu  10Sr
epu  kerBar

epu  1 Sr
epu  3 Sr

epu  10 Sr
epu  

0,0 -8.5069 -8.8839 -8.9290 -8.9189 0.4120 0.0350 0.0101 
0,5 -3.4041 -3.5550 -3.5730 -3.9687 0.5646 0.4137 0.3957 
1,0 -1.8850 -1.9685 -1.9785 -2.0163 0.1313 0.0478 0.0378 
1,5 -1.2698 -1.3261 -1.3328 -1.3351 0.0653 0.0090 0.0023 
2,0 -0.9534 -0.9956 -1.0007 -1.0001 0.0467 0.0045 0.0006 
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Table 5 –  The effective interaction potential of the proton-electron in unit of 1/ Bk T   at temperature 65 10T K   , 
for several values of Sr  . Here kerBar

epu  are results of Barker and kerBar
ep ep epu u u   . 

 
( )Br a  1Sr

epu   3Sr
epu   10Sr

epu   kerBar
epu  1Sr

epu   3Sr
epu   10Sr

epu   

0,0 -19.7771 -19.9536 -19.9739 -19.9432 0.1661 0.0104 0.0307 
0,5 -3.9385 -3.9736 -3.9776 -4.0064 0.0391 0.0328 0.0288 
1,0 -1.9828 -2.0004 -2.0024 -1.9996 0.0163 0.0008 0.0028 
1,5 -1.3218 -1.3336 -1.3350 -1.3330 0.0112 0.0006 0.0020 
 
 
At high densities 22 310n cm the semiclassical 

potential (10) weakly depends on the change in the 
density (see fig.10). In this case the semiclassical po-
tential (10) can be interpolated by the following for-
mula:
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For the sake of completeness it is desired to ac-

count the quantum mechanical symmetry effect aris-
ing from the interaction of the identical particles as 
well as the diffraction effect. Its influence on the inte-
raction is weaker then the diffraction effect but can be 
quite large at high densities. The symmetric effective 
potential for the mixture of the ideal gases of indepen-
dent electrons has the following form [15]: 
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Figure 11 –  Electron-electron pair interaction 
potentials.Here / , 0.5R r a   . 

 

Figure 12 – Electron-electron pair interaction poten-
tials. Here / , 0.5R r a   . 

 
Hence, according to (12) the following formula 

has been obtained for the total pair interaction poten-
tial in the dense nonideal plasma: 
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 (13) 

It should be noted that the diffraction effect in the 
many particles system for pair interaction potential is 
included in the first term and the second term is re-
sponsible for symmetry effect between fermions in 
plasma. The comparison of the potentials (12) without 
symmetric term and (13) with symmetric term is 
shown in figures 11, 12. It is seen that the contribution 
of the symmetry effect diminishes with decrease in 
density and with increase in temperature. 
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3  Conclusions 
 
Generalized potential of pair interaction for the 

dense semiclassical plasma was obtained. It correct-
ly takes into account diffraction effects in the many 
particles system in a wide region of temperatures 
and densities. Semiclassical potential has a good 
agreement with the Deutsch potential at high tem-
peratures. This potential can be modified by the ad-

dition of the term taking into account the symmetry 
effects. As the result the semiclassical pair interac-
tion potential which takes into account both diffrac-
tion effect and symmetry effect  for dense nonideal 
plasma was obtained. 

This work was supported by the Ministry of 
Education and Science of the Republic of Ka-
zakhstan under grant 1415/GF2 (IPC-21,2013). 

 

References 
[1] C. Deutsch, G. Maynard, M. Chabot et al.,The Open 
Plasma Physics Journal. 3, (2010). 
[2] H. Nersisyan, C. Deutsch, Laser And Particle Beams. 
29, (2011). 
[3] W. Lorenzen , B. Holst , R. Redmer , Phys. Rev. 
B.82, 195107 (2010) 
[4] B. Holst , M. French, R. Redmer, Phys. Rev. B .83, 
235120 (2011) 
[5] W. Lorenzen , B. Holst , R. Redmer , Phys. Rev. 
B .84, 235109 (2011) 
[6] W. Ebeling, Ann. Phys. 19, 104(1967). 
[7] W. Ebeling, G. Kelbg, and R. Sandig, Beitr. Plasma 
Phys. \textbf{10}, 507(1970). 
[8] V. S. Filinov, M. Bonitz, W. Ebeling, and V. E. For-
tov, Plasma Phys. Controled Fusion. 43, 743(2001). 
[9] S. A. Trigger, W. Ebeling, V. S. Filinov, V. E. For-
tov, and M. Bonits, JETP. 96, 465(2003). 
[10] W. Ebeling ,H. Hache , H. Juranek , R. Redmer  and 
G. Ropke , Contri. Plasma Phys.45, 160(2005). 
[11] C. Deutsch, Ann. Phys. (N.Y.)115, 404 (1971). 
[12] C. Deutsch, Phys. Letters,60A, 4 (1977). 
[13] N. Grandjouan, C. Deutsch, Phys. Rev. A11, 
522(1974). 

[14] H. Minoo, M.M. Gombert and C. Deutsch, Phys. 
Rev. A, 23, 2(1981). 
[15] A.V. Filinov, V.O. Golubnychiy, M. Bonitz, W. 
Ebeling, J.W. Dufty, Phys. Rev E 70,046411 (2004). 
[16] M.A. Pokrant, A.A. Broyles and T. Dunn, Phys. 
Rev. A10, 379 (1974). 
[17] V. Golubnychiy, M. Bonitz, D. Kremp, M. 
Schlanges, Phys. Rev. E, 64, 016409 (2001) 
[18] V.S. Filinov, P. Thomas, I. Varga, T. Meier, M. 
Bonitz, V.E. Fortov, S.W. Koch, Phys. Rev. B  65, 
165124 (2002). 
[19] T.S. Ramazanov, K.N. Dzhumagulova, Yu.A. 
Omarbakiyeva, Phys. Plasmas 9, 092702-1-4 (2005). 
[20] T.S. Ramazanov, K.N. Dzhumagulova, Phys. Plas-
mas 9, 3758 (2002). 
[21] T. Raitza ,G. Roepke, H. Reinholz  et al. Phys. Rev. 
E. 84, 036406 (2011). 
[22] M. Steinberg, W. Ebeling, J. Ortner,  Phys. Rev. E. 
61, 2290 (2000). 
[23] Zh.A. Moldabekov., T.S. Ramazanov., K.N. Dzhu-
magulova, Contrib. Plasma Phys., 3, 207 - 210 (2012). 
[24] A. A. Barker, J. Chem. Phys.  1751 (1971). 

 
 


