
9

Physical Sciences and Technology Vol. 4 (No. 1), 2017: 9-14

IRSTI 27.35.51
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We analyze the Vlasov dispersion relation for Yukawa plasmas in three dimensions for the purpose of identifying 
coupling parameter domains where the Vlasov approach is justified and the existence of a well-developed RPA 
type collective excitation is allowed. We establish a rigorous lower bound for the coupling parameter, below 
which there can be no real solution to the Vlasov dispersion relation. In the coupling domain, where weakly 
damped solutions do exist, we have focused on the long-wavelength acoustic regime where we establish more 
restrictive estimates for the lower bound of the coupling parameter. We also derive a general formula for the 
corresponding acoustic phase velocity, valid over a wide range of coupling parameter/screening parameter ratios 
above the lower bound. We conclude that the Vlasov approach is tenable only above a critical coupling value. 
Comparison with Molecular Dynamics simulation results further highlights the limitations of the Vlasov 
approximation for weakly coupled Yukawa plasmas.    
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1 Introduction 

The collective behavior of a conventional weakly 
coupled Coulomb plasma is well described by the 
Vlasov equation. The Vlasov kinetic equation can be 
used with relative ease for the calculation of the 
plasma dielectric function ���� ��, which then can 
be invoked to determine the collective mode 
structure [1]. For the simple model of the one 
component plasma (OCP) the well-known 
conclusion is the existence of the plasma oscillation 
as the longitudinal collective mode, governed by the 
plasma frequency ��  (defined below), whose 
dispersion ����  is given by the Bohm-Gross 
dispersion relation. This approach, however, has its 
limitations: once the value of the coupling parameter 
Γ (defined below) exceeds 1, the plasma becomes 
strongly coupled and the dielectric response function 
shows a substantial deviation from its Vlasov 
structure, with a concomitant dramatic change of the 
plasmon dispersion.  

Interest in multicomponent systems, where the 
basic Coulomb interaction between the dominant 
particles is screened by other charged particles in the 
system has led to the Yukawa plasma model, 
consisting of one single species of particles, whose 
interaction is through a short-range Yukawa potential 

with a screening parameter �  (see eq. (1)), rather 
than through the long-range Coulomb potential. The 
most prominent representatives of such systems are 
dusty plasmas. Basic symmetry principles [2], 
supported by experimental observations [3-7], 
demand that the longitudinal collective excitation of 
the Yukawa OCP (YOCP) be an acoustic mode, i.e. 
��� � �� � ��, where � is the sound velocity. The 
YOCP may also be weakly or strongly coupled, 
determined by the value of its coupling parameter Γ� 
(which, in general, is different from Γ). The reliable 
calculation of the sound velocity requires the 
determination of ���� ��  and its employment to 
obtain the collective mode dispersion, in a fashion 
similar to what has been established for the Coulomb 
OCP. The question then arises whether for a weakly 
coupled system the formalism that is based on the 
Vlasov equation may be used for the YOCP as well. 
In the existent literature on the subject (see e.g. [8]), 
the tacit assumption is made that the answer is in the 
affirmative. The validity of the Vlasov equation, 
however, hinges upon two conditions: (i) the long 
range character of the interaction, and (ii) weak 
coupling [9]. While the second condition may be 
satisfied, the first one is obviously not. Thus, we 
contend, the issue has to be carefully re-examined. 
This is the purpose of the present paper. We will 
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show that apart from the weak coupling requirement, 
Γ�  or Γ are subject to a limitation, which restricts 
thevalidity of the Vlasov approach to a certain 
domain. We will also demonstrate that recent 
Molecular Dynamics (MD) simulations mostly 
corroborate this conclusion.  

The Yukawa interaction potential has the form  
 

 �(�) = �� ����

�                (1) 
 
with Fourier transforms  
 

 �(�) = ����

�����,                (2) 
 

� representing the charge of the particle and � 
the screening parameter. The coupling constant is 
defined as  

 Γ = � ��

� ,                  (3) 
 

where � = 1/��� and (4�/�)��� = 1 defines the 
Wigner-Seitz radius � in three dimensions. For Γ ≪
1 the system is considered weakly coupled while for 
Γ > 10 particles correlations become dominant and 
the system is in a strongly coupled phase and for Γ >
Γ�  the system forms a Wigner crystal. The exact 
value of Γ� and the crystal structure depend on � 
[10]. The collective mode spectrum of the YOCP is 
governed by a single longitudinal acoustic mode that 
in the � � 0 limit morphs, mirroring the Anderson 
mechanism, into a longitudinal plasmon [11]. In 
contrast to the OCP, where the longitudinal plasmon, 
protected by the Kohn sum rule, is independent of 
correlations [12], the acoustic mode in the YOCP 
strongly depends on the coupling parameter. 
Focusing on the weak coupling domain, the aim of 
this paper is to see to what extend the Vlasov 
approach can be justified here and to find a bound in 
terms of Γ, �  for the existence of a RPA type 
collective mode in the weak coupling regime.  

The collective mode is the solution of the 
dispersion relation [13]  

 
 �(�, �) = 1 − �(�)�(�, �) = 0,           (4) 

 

where �(�, �)  is the screened (total) density 
response function,  

 
 �(�, �) = − �

� � � � �
�����

��(�)
�� ,      (5) 

 
and �(�)  is the Maxwellian distribution function 
normalized to the average particle density �. On the 
premise that the Landau damping is weak, seeking 
the zeros of (4) amounts to solving  

 
 �

�(�) = �� � (�, �(�))            (6) 
 

for the (real) oscillation frequency �(�) , 
accompanied by the calculation of the companion 
damping rate  
 

�(�) = − �� � ��, �(�)�
��� �� � (�, �) |���(�)

= 

 
− �� �(�,�(�))

��� �� �(�,�) |���(�)
< 0.         (7) 

 
In deriving eqs. (6) and (7) we have invoked the 

well-known weak-damping hypothesis  
 

��� � ��, �(�)�� ≪ 
|�� � (�, �(�))|,  |�(�)| ≪ �(�).    (8) 

 
The following dispersion relation then results 

from eq. (2):  
 

 �̄���� �

�� = �
�� �� � (�),           (9) 

 
�

�� �� � (�) = −1 � �
√� � � ��

�� � ����

��� ,     (10) 
 

 �
�� �� � (�) = −√�����,         (11) 

 
� = (�/�)���/2 , �̄ = �� , �� = �� . The 

function (1/��) �� � (�) , shown plotted in 
Figure 1, reaches its maximum value (1/
��) �� � (�)|��� = 0.2847 at � = 1.�.
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Figure 1 – Plot of (����)��� � (�) as a function of � = (���)����2 

 
 
Now, for ��  fixed, �  varies with �  only. 

Consequently, for a given assigned pair of values 
(�, �̄), the left-hand-side (LHS) term of dispersion 
relation (9), being independent of �, would graph as 
a horizontal line above the � axis in Figure 1. Then 
clearly there can be no solution to (9) if the horizontal 
line is situated above (����) ��� � (�)|��� =
0.2847, that is, if  

 
 �̄���� �

�� ≥ �̄�
�� > 0.2847,           (12) 

 
Thus, for �� > 0, the condition  
 

 � � �.�7�̄�,           (13) 
 

is sufficient to guarantee that there can be no 
solutions to eq. (9). In the long-wavelength (� � 0)  
 

limit, which is especially of interest in the present 
work, condition (13) become necessary as well. 

Concentrating on the long-wavelength domain 
where the dispersion is acoustic, i.e. � � �� (� is 
the sound speed), we now consider the possible 
solutions of the dispersion relation (9): those 
belonging to � � ����  are obviously ruled out as 
possibilities since the derivative ��
�� ��� � (�, �)||���(�)  can never be positive 
definite at � = �(�)  [see eqs. (7), (8), (11)]. 
Consequently, only the descending portion of the 
curve in Figure 1 is relevant, and a more restricted 
lower bound on the coupling parameter can be 
estimated by selecting the smallest value of � on the 
descending portion that will ensure that the Landau 
damping is sufficiently weak to allow the formation 
of a viable acoustic mode. Table 1 facilitates this 
selection.

 
Table 1 – Tabulated values of the real and imaginary part of � and Landau damping 

 
� (���)��� � (�, �(�)) (���) �� � (�, �(�)) ��� �� � (�, �) |���(� ��(�√2)

1.60 0.2798 -0.2192 -0.1311 -1.4785
1.70 0.2667 -0.1675 -0.1832 -0.7604
1.80 0.2484 -0.1249 -0.2108 -0.4657
1.90 0.2273 -0.0911 -0.2194 -0.3091
2.00 0.2054 -0.0649 -0.2144 -0.2141
2.10 0.1839 -0.0452 -0.2007 -0.1518
2.20 0.1638 -0.0308 -0.1820 -0.1089
2.30 0.1456 -0.0206 -0.1614 -0.0783
2.40 0.1295 -0.0134 -0.1408 -0.0561
2.50 0.1154 -0.0086 -0.1216 -0.0398
2.60 0.1033 -0.0053 -0.1044 -0.0278
2.70 0.0928 -0.0033 -0.0894 -0.0191
2.80 0.0839 -0.0020 -0.0766 -0.0129
2.90 0.0762 -0.0011 -0.0659 -0.0085
3.00 0.0696 -0.0007 -0.0570 -0.0054
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We observe that the Landau damping diminishes, 
as it should, with increasing �. To be on the safe 
side, we select � = 2.2 as the value beyond which 
the acoustic mode can be considered to be viable. On 
this basis, we can state that the realization of 
along-lived acoustic mode requires that  

 
 �̄�

�� < 0.164,                 (14) 
 

resulting in a more restrictive lower bound estimate:  
  

Γ > 2.03�̄�.                   (15) 
  

The sound velocity � , valid for � � 2.4 , is 
calculated by solving the dispersion relation (for �) 
resulting from the combination of eq. (9) and the 
large � expansion of (10): 

  
1

�� �� � (�) ≈ �
2 + 3

4 �� + 

+ ��
� �� + ���

�� �� + �(��),        (16) 
 
� = 1���. The inversion of (16) combined with 

(9) leads to  
  

 
���� ≈ �

� (1 + 3� + 6�� + 24�� + �0�� + �(��)),                          (17) 
 

 
 � = �� ���̄�

�� .                   (18) 

The series (17) represents an asymptotic 
expansion, such that using only the first few terms  
 

(the number of terms depends on the value of �) 
provides the best approximation. We have found that 
for � = 0.1 the first three terms in the series suffice. 
Then

  

 ���� ≈ ��
�� ���̄� �1 + 3 �� ���̄�

�� + 6 ��� ���̄�

�� �
�

�.                               (19) 
 

 
seems to be the best approximation for the 
Yukawa-Vlasov acoustic dispersion.  

At long wavelength � � 0 with � = 0, eq. (17) 
simplifies to a purely acoustic dispersion  

 

 ���� = ��
�̄� �1 + 3 �̄�

�� + 6 ��̄�

���
�

�.       (20) 
   
Note that if one sets � = 0 at the outset (eq (9)) 

and then goes to the long wavelength limit thereafter, 
eq. (17) morphs into the familiar Bohm-Gross 
dispersion relation characteristic of the Coulomb gas:  

 
��(�) = ��� + 3 ��

��,          (21) 
where ��� = 4������.  

Our analytic result may now be compared to 
those of a 3D MD simulations. In Figure 2 we plot 
the sound speed in units of its � = 0 limit, �� =
�����̄, for a range of weak coupling parameters. We 
notice that in the domain of validity eq. (20) is in 
reasonable, but not good agreement with the 
simulations. However, we have also found that the 
heuristic formula  

 

 ���� = �
�

��
�̄� �1 + �1 + 12 �̄�

���        (22) 

 
while it represents a poorer approximation to the 
Yukawa-Vlasov dispersion - provides a more 
satisfactory agreement with the MD data.  

The agreement deteriorates for Γ values lower 
than the bound. In fact, simulations show that further 
reducing Γ  leads to the disappearance of a 
well-defined mode. For Γ > 1 the agreement gets 
worse again: this is not unexpected, sinceone leaves 
the weak coupling zone.  

The more precise relationship for the weak 
coupling/strong coupling transition value should be 
based on [15]  

 
Г� = Г�(�̅) = 1,            (23) 

 
�(�̅) = 1 � 0.30��̄� + 0.0�00�̄�,   (24) 

  
Thus, the domain of validity for the Vlasov 

approach to be acceptable is bounded by the 
condition  
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������� � Г � �����̄�,         (25) 

These two conditions are compatible only for 
�� � ����   further signaling the limitations of the 
applicability of the Vlasov approach to weakly 
coupled Yukawa plasmas.  

Finally one may wonder about filling the lacuna 

created by the absence of the availability of the 
Vlasov equation below the lower bound. It amounts 
to finding the appropriate kinetic equation for a 
weakly coupled gas with a relatively short-range 
potential. This is still an unsolved problem, although 
one may suspect that a Boltzmann-like equation may 
do the job.

Figure 2 – Plot of the 3D sound speed obtained from MD simulations and eq.(20) rescaled by. 
The vertical bars indicate a 5% error 
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