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Diffraction corrected effective and Coulombic electron-ion interaction are worked out for helium like ions 
in plasmas of warm dense matter (WDM) and chemically-reacting concern, through explicit wave 
functions derived within an appropriate quantum defect framework. Very significant departures from the 
usual and corresponding hydrogenlike expressions are then witnessed. To do so, we strongly rely on a 
coherent quantum defect model (QDM) making use of parameters qualifying departures from hydrogenic 
bound states with same quantum numbers for negative energies as well as phase shift corrections for 
positive energy levels. Such an approach is also completed with a very accurate Hartree-Fock (HF) 
approximation for the ground state. The QDM then approaches the Slater sum-over-state- for the binary 
electron-ion where the pertaining ion retains an electron on its 1s hydrogenlike ground state. The resulting 
electron-ion effective interactions are then analytically derived through classical pair correlation 
functions. These latter are thoroughly contrasted to their hydrogenlike homologues. In addition,ionization 
in a 3-component electron-two ion system is also given a certain attention. 
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1 Introduction 
 
To deal efficiently with basic and statistical 

physics concepts of central concern in dense and 
partially ionized plasmas, one is often confronted to 
the pitfall arising from the short range divergence of 
the ubiquitous electron-ion attraction [1-9]. A 
straightforward and pertinent approach allowing to 
circumvent this difficulty while maintaining a quasi-
classical setting for equilibrium and transport 
properties is the mitigation at high temperature  
(T ≥ 1 Ry for low Z ions) of the given attraction 
through diffraction corrections due to the 
uncertainty principle. Up to now this standard 
procedure remains restricted to hydrogen-like 
electron ion interactions. This situation is mostly 
due to the identification of Gibbs potential with 
corresponding Slater sum requiring explicit wave 
function for the given pair of unlike charges. 
Moreover, when one is confronted to heavy ions 
(Z>>1) retaining many bound planetary electrons, a 
Thomas-Fermi like description [10] is then usually 
in order, thus avoiding the use of explicit wave 

functions. However, strong and persistent request, 
mostly from the warm dense matter (WDM) 
community [11-12] stressing strongly coupled 
plasmas with solid density and T(eV) ≤ 10, as well 
as accurate diagnostics of ion-plasma interaction 
[13,14], put a recent and urgent emphasis on Helium 
like ions, i.e. with nuclei (any Z) retaining a strongly 
bound ls electron. 

Accurate analysis of equilibrium and transport 
properties of helium-like chemically reacting 
plasmas [15] also features a significant domain of 
present concern where He-like Coulomb-like 
interactions are also urgently requested. In order to 
appreciate the present Slater sum approach within 
the perspective afforded by the present very active 
field of simulation techniques dedicated to WDM 
investigations based on path integral Monte-Carlo 
(PIMC) methods or on the extraction of ion-ion 
effective interactions [16-19] from N-body quasi-
classical approaches, one witnesses an urgent 
demand for accurate non hydrogenic electron-ion 
pseudopotentials. In particular, the matching of 
PIMC thermodynamics at high temperature with the 
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Debye one [16] requires that partial ionization and 
ion excitation be carefully accounted for 
temperature higher than the helium-like ion 
ionization energy (Eq.(27) in the sequel). 

In this report, we intend to demonstrate an 
analytic derivation of the pertaining electron- ion 
pseudopotential, for this specific 3-body problem. 
Toward this goal we systematically rely on a 
consistent quantum defect model (QDM) [20, 32] 
based on parameters ab qualifying departures from 
hydrogenic bound states energies and ac for the 
phase shifts of the positive energy levels. Such an 
approach, completed with a HF ground state 
description [23] is validated by its overwhelming 
success in reproducing helium atom properties as 
quantitatively accurate as the hydrogen atom ones. 

The present work is thus structured as follows. 
Sec. 2 develops the quantum defect model (QDM) 
approach to the Slater Sum-over- states for the 
binary system electron-ion Z1(Z1=Z-1), with ion Z1 
kept on its hydrogenic 1s ground state. 
Concommittent spin effects are also paid a due 
attention. The given temperature-dependent e-ion Z1 
effective interactions are then analytically detailed 
in Sec. 3, through the corresponding pair correlation 
function. The novel helium-like pseudopotentials 
are systematically contrasted to their hydrogen-like 
homologues, taken in a sequence with increasing 
precision. Ionization ion in a 3-component e-ion Z-
ion Z1 dense plasma is worked out in Sec. 4, with 
the aid of canonical free energy including electron 
exchange as well as quantum corrections featuring 
QDM parameters for e-ion Z1 excited states. The 
following analysis implies that the plasma electrons 
remain classical (non degenerate), thus keeping their 
Debye length larger than the de-Broglie thermal one 
and still smaller than their average interdistance. 

 
2 Slater sum approach (SSA) 
 
2.1. Bound state contributions 
Our basic concern is the plasma electron-ion 

effective interaction (pseudo-potentiel) in a He-like 
plasma where most of the ions (nonrelativistic) have 
the charge Z1=Z-1, i.e. retain a strongly 1s bound 
orbital electron. As in the well-known H-like the 
searched pseudopotential writes as (= 1/kT) 

 

U(r)  
1


ln g(r)                     (1) 

 
in terms of  the e-Z1 ion canonical correlation 
function. The main focus of the present work is to 

demonstrate a complete calculation of g(r) based on 
the present knowledge of the He atom physics. 
Numerically speaking, the latter is presently as 
accurate as the H atom one [20]. In order to make 
our derivation of present e-Z1 effective interaction 
as close as possible as to its Hydrogen like 
homologue with ion of charge Z, we shall elaborate 
our further developments on the quantum defect 
method [20]. Such an approach should secure an 
immediate matching with hydrogen-like (non 
relativistic) wave functions of the present QDM 
ones. Then, the corresponding 2-body and bound 
state part of g(r) appears under the H-like form 
(=(1/kT),  
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in terms of (n,) H-like excited states (m is the 
electron mass) with energy Enl and wave-function 
Rnl(r) derived from their H-homologues though the 
QDM procedure detailed below. The first term n = 
1,  = 0 pertaining to ground state is given a specific 
Hartree-Fock attention with the parametrized 
expression, 

1
2Z1

3/ 2 RF (r)  ci
i0

2


ki

Z1











3/ 2

exp kir       (3) 

 
by Clementi and Roetti [23]. Some excerpts of the 
required parameters tabulations are given on  
Table 1. 

The corresponding gL(r) contribution is 

adequately parametrized with 

 

L

 Z1

1/ 2, ratio 

of classical Landau length to the De Broglie electron 

wavelength. So, with 

x 

r


, the HF partial 

correlation featuring the fundamental He-like state 
writes as 
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where  i

*  i /Z1  et  *   /Z1 
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Table 1 – Hartree-Fock coefficients and ionization energies forthe He-like sequence. (Clementi-Roetti[23]) 
(r)  2 ciki

3/2
i0
2 ekir  

 
Z k0 k1 k2 c0 c1 c2 z(a.u.)
    
2 1.45286 2.77954 4.34600 .82958 .18334 .00824 .91795
3 2.45055 4.57259 6.67032 .89066 .12328 .00088 2.79226
4 3.43071 5.63150 7.35143 .89855 .09068 .02158 5.66712
5 4.44422 74.90274 11.31380 .93036 .07786 .00013 9.54194
6 5.44726 9.80425 14.61460 .94428 .06382 -.00125 14.41690
7 6.45215 11.69880 19.74410 .95445 .05228 -.00096 20.29181
8 7.45601 13.66210 22.59050 .96175 .01115 -.00121 27.16675
    

26 25.45370 47.42210 56.67690 .98817 .01692 -.00361 321.91659
 
 
Next, we have the n,) excited states, which we 

intentionally limit to =0,1 and 2 and explain with 
radial H-like wave functions (f) 
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indexed with the explained below parameter (see 
Appendix) [20] ab dependent on Z, n and . So, the 
effective quantum number n*=n-+ab, allows to 
explain excited bound state energies within the H-
like expression  


En  

Z1
2

n*2  

 
Given partial correlation contributing to gL(r) 

may now be given an explicit dimensionless 
expression, 
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where n = 2 for  = 0, 1  and  n = 3 for  =2 . 

Terms pertaining to excited states with  ≥ 3 are 
taken hydrogenic [25] and explained with ab=0 
through H-like Rn(r) for Z1. 

 
2.2. Diffusion state contributions 
As far as two-body e-Z1 continuous states are  

considered we consistently restrict the ≥3 to pure 
Coulomb ones with charge Z1 (ac=0 in the sequel). 
For relative angular momenta ≤ 2, and positive 
relative energy e-Z1. For relative angular momenta 
≤2, and positive we now have to consider [24]

 
 

 
  

 
 

     
1/ 22 2 2

1

2 1 2 2 2 1 2 2 21/ 2
0 1

1 / 12
( ) 1

1 2 21 exp 2
c

c c

pp
s a c

k p a p p a p
p

s a ik k r
R r x A J B J

r i Z

  
  




 

    


    
  

   

     
    
   









         (7) 

 
 
where   Z1 /k , while ac relying on Z,  and k 
features the other positive energy and crucial QDM 
parameter (See Appendix). 

Coefficients A2p and B2p+1 are detailed as  
 

A0 = 1,  A2 = 1+ac,   A4 = (1+ac)(2+ac)/2    (8) 
 

B1 = 0,  B3 = 1/3,     B5 = (8+5ac)/15, 
 

p ≥ 3 : 
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p(2p-3)A2p =  [(p-1)(2p-3+2ac)+(2p-3) 
(p+ac)]A2p-2-(2p-3+2ac) (p-1+ac)A2p-4-2h2A2p-6 

 
(p-1)(2p+1)B2p+1 = [(p-1)(2p+1+2ac)+ 

+(2p-1)(p-1+ac)]B2p-1-(2p-1+2ac) 
(p-1+ac)B2p-3-2h2B2p-5 

 
The resulting partial-correlation function 
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then appears through y  k /Z1 under the form 
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where   1 2ac  2p with   2 2x  and 
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At this level of presentation, it should be 

appreciated that the displayed QDM formalism 
entirely relies on the two parameters ab and ac. So, it 
is now timely to recall that ab is derived from the 
very accurate (n,) ionization energies [20] while ac 
is directly related to the departure from the Coulomb 
phase, which we denote 1(k2 )  by [18] 
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also a very well documented quantity. Our former 
assertion about the ab=ac=0 approximation for the 

≥3 excited levels stems from detailed 
investigations of the Z=2 polarization model [25]. 

 
2.3 Spin effects 
In hydrogenic systems, electron spin plays only 

a minim role essentially limited to relativistic  
calculations of the fine structure constant, pertaining 
relativistic modifications remaining small relative to 
the Bohr and non relativistic binding energy. The 
situation looks different in the He-sequence, because 
the total spin S=0 or 1 has to be included in the 
evaluations of  En and (k2). Energies of singlet 
and triplet states thus differ at most by 20 percent 
for the first excited states. As for as the present 
QDM framework is considered, this S-dependence 
is included within  ab(n,,Z,S) and ac(n,,Z,S) with 
≤2. (Practically, it suffices to include that S-
dependence for low lying ≤2 levels). To determine 
those S-dependent states, were are thus led to 
envision a model with an electron orbiting in a field 
of a non-point-like ion, so the given wave functions 
do not exhibit the usual an antisymmetric form, and 
are distinct according to S = 0 or 1. Spin effects are 
then accounted through 

 


g2

S (x) 
3
4

g2
S1(x) 

1
4

g2
S0(x),   (12) 

 
leading to the more accurate expression 
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for the total e-Z1 correlation function. 

These spin effects decay with increasing Z1. 
They are mostly significant for Z=2, with significant 
S=0, 1 discrepancies.  Fig. 1a display =0,1 
correlation functions with S = 0,1 for Z=2. The S 
discrepancy shows up as significant. Fig. 1b also 
displays same g�(x) contrasted to those of Z=4 
(boron). Considered temperatures feature same 
parameter for both elements. So, one witnesses that 
this S-effect decreases when Z increases, whenever 
the same ionization is maintained. 

 
2.4 Structure Effects 
Our presently used QDM techniques imply that 

the pair e-Z1 correlation function be computed 
through hydrogen-like wave functions with net 
charge Z1=Z-1. The structure effects featured by the 
He-sequence are expressed with non integer ab and 
ac parameters. The latter highlight the discrepancy 
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between He-like g(x) and H-like ones with 
equivalent point like charge. Figs. 2 exhibit partial 

g(x) with =0,1 or  2 for He, then contrasted to their 
H-like homologues. 

 
 

Figure 1 – Partial correlation function g(x) in terms of scattering states =0.1 for total spin s=0.1:  
a) He 3-body plasma; b) He 3 body plasma contrasted to He-like B plasma 
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Figure 2 – Partial correlation functions out of bound states for H and He plasmas at T=4x104 °K:  
a) =0.1 for H and He; b) =1 for H and He and =2 for He 
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3 Effective interaction e – Z1  
 
3.1 General trends 
Elaborating upon the above detailed evaluation 

of the total e-Z1 correlation function of 
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were are now entitled to proceed to the extraction of 
the T-dependent e-Z1 effective interaction from Eq. 
(1). A first and instructive study concerns the 

comparison of H-like g(H)(x) and He-like g(He)(x), 
with x = r/ 

To implement this matching it is appropriate to 
take the e-Z1 effective interaction under the form 
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depicted on Fig. 3 for =2 and the He-like sequence 
2 ≤ Z ≤ 26. He-like u(x) gets closer to its H-like 
point-like limit when Z increases. Moreover, g(He)(x) 
values are directly contrasted to g(H)(x) values on 
Figure 4, 
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when  is fixed, a given T value is ascribed to a 
given Z value. One thus compares correlation 

functions at different Z values and equivalent 
ionization stage. 
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Figure 4 –  He-H discrepancies 
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3.2 Analytic expressions 
In order to secure a transparent and instructive 

comparison with standard effective interactions 
currently used in hydrogenic plasmas, we try to put 
the present He-like pseudopotential under a form as 
close as possible to the finite T extension of the 
Kelbg-Deutsch potential [2,4-6] as proposed by 
Gombert and Wagenknecht et al. [7]. Toward this 
goal, we thus recall the Kelbg expression 
H  Z1/ 2  [2] 
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in terms of the Error function 
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yielding 
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expansion. A very closed related expression to 
UK(x) features the simpler Deutsch expression [4-6] 

 


H

Z2 UD(x) 
1
x

1 e 2x           (18)  

 
Both UK(x) and UD(x) are mostly accurate in 

hydrogenic plasmas at very high (if not infinite) 
temperature. To remedy for this drawback Gombert 
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with the small x-expansion 
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Now, we turn toward the He-like effective 

interactions fulfilling  
 

( He  Z 1 1/ 2  H /  1  where =1/(Z-1)) 
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and valid at any temperature T, because bound and 
scattered states are explicitly included through the  
QDM approach. The given He-like effective 
interaction UHe(x) is supposed to yield back 
UGW(x) for =1/ (Z-1)0. 

First, UGW(x) gets validated for any finite 
temperature T with a AH parametrization for,  ~1 
coincident with above expression (19) for <<1. 
Then, we reach a hydrogenic pseudopotential valid 
at any T. Next, we introduce an -parametrization 
acknowledging the He-like sequence (mostly 
Z=226). Then, we arrive at the -dependent 
expression 
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and       
   2 2

0 1 2, 1g b b Erf b           
 

   , 0 0, 1g g        
 
Coefficients ao, a4, a,b,bo,b1 et b2 are given on 

Table 2.

 
Table 2 – Coefficients involved in Eqs. (23 a-b) 

 
a0  = .14827548 a1 = .0155383 a2 = .00421951 
a3 = .00027919 a4 = .0116586  
a   = 1.75972 b   = .291829  
b0 = .852678 b1 = .0425476 b2 = .00920166 

 
 
Figure 5 feature A and B- variations in terms of 

 parameter. Curves with  = 0 pertain to UGW(x) 
interaction valid for any T value. Kelbg’s 
parameters get retriwed for Ak = 2 and Bk= 2  
at  =  = 0. A is obviously more -sensitive than 

B. Permuting and  roles, we get the  
parametrized A and B in terms of , on Figure 6. 
We do not pay much attention to > 4, A and B 
values, featuring lower temperatures when H-like 
and He-like ions become scarce. 
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Figure 5 –  A and B (Eqs.23 a,b) for He-like effective interactions in terms of  and 0 ≤ ≤1 respectively 
 
 
UGW(x) data are also retrieved for <<1 and    

= 0, with a very good accuracy. Numerically 
speaking, the present UHe(x) fits the e-Z1 radial 
distribution function with a 1-2 percent precision. 
Near x = 0, it also fulfils 
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Figures 6 – A and B (Eq. (23a-b)) for UHe(x) In terms of  0 ≤  ≤ 1 and 2 ≤  ≤ 3 
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highlighting now an x2 term, absent in previous 
H-like effective interactions. Moreover, the slope at 
x=0 

PHe  2 1 2
f  

g , 








 P0 ,        (25) 

where P ,  0  2  PH  appears -and T-
dependent. 

 
3.3 Numerics [25] 
Figures 7a-c feature the above displayed e-Z1 

effective interactions systematically confronted to 
their Hydrogen-like homologues for Z=2, 10 and 92, 
respectively. The e-Z1 distance is scaled by the 
electron thermal wavelength   in a dense plasma 
with Te = Ti, where Ti designates the same ion 
temperature for ion Z and ion Z-1. 

D denotes Deutsch expression (18), GW is for 
Gombert-Wagenknecht expression (19) and K is for 
Kelbg expression (16). The Helium-like effective 
interactions (23) are thus compared to their various 
Hydrogen-like counterparts UK(x) (Eq 16), UD(x) 
(Eq.18 ) and UGW(x) (Eq.19). The He-like –H-like 
discrepancies are strongly noticeable for x ≤1, and 
increase with Z. These results demonstrate clearly 
that WDM properties computed for He-like Be, for 
instance, cannot be approximated by the H-like 
effective interaction (16, 18, 19). In this connection, 
it is pretty instructive to test the low-T behavior of 
expression (23) with the dominant H-like 
approximation [27] 

 
 

2

1

3 / 2 2( ) 2 /x
eZg x Log e                 (26) 

 
denoted as Hbd in Figures 8 which lies pretty close 
to UGW (x) for x ≤ 0.5, while geZ1(0) ~UGW(0) is well 
represented by Log(gij (0, )) where  = 22 and 
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In terms of Gamma (x) and Zeta (x) functions  

respectively. As T increase with no limits, the He-
like behavior (23) tends to join the H-like 
homologues (16,18-19), with a marked saturation 
observed for T > J (Ryd) with [28] 

 
 

2
1 1

1

2 3 4
1 1 1

5 10.315311 0.01707
4

1 1 10.00068 0.00164 0.00489

J Z Z
Z

Z Z Z

    

  

,       (27) 

 
nonrelativistic ionization energy of ion Z1.  

Hbd refers to the H-like bound state contribution 
(26). D,GW and K attributions are the same as on 
Figures 7. 

 
4 Ionization in dense 3-component plasmas 
 
4.1. Notations   
It is convenient to write the canonical ionization 

in a 3-component (e, ion Z, ion Z1) plasma under the 
form 
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Numerically, one thus gets 
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(a) 

 
 

(b) 
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(c) 

 
 

Figures 7 –  He-like effective interaction (23) contrasted  
to its H-like homologues (16, 18, 19) in a He plasma. 

(a) Z=2 for 4 < T(eV) < 4000 
(b) (b).Z=10 for 4 < T(eV) < 4000 
(c) Z=92 for 0.4 <  T(keV) < 400 
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Figures 8 –  He-like effective interaction (23) contrasted to its H-like homologues (16,18,19) 
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4.2. Ionization equilibrium 
At equilibrium in a 3-component plasma the 

canonical free energy F fulfills 0
dF
d

  for a given 

(T, I) pair. It then appears appropriate to split the 
given partial derivative as  
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then, we have the Coulomb part  1/kBT  and 
the exchange one  
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Quantum corrections QF
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 are also split, so we 

get the first contribution under the form  
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In the above Ae, Az and Az1 feature respectively 

the three T-dependent effective interactions [30] 
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Their, putting the Fourier transform of Uee(r) 
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while explaining the determinant of the above 
three UijS interactions in k-space, as 
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with Coulomb ion-ion interactions  
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and  upp k  4
k2 , 

 
allows us to explicit the 2nd quantum contribution as 
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Finally, the above dF/d=0 relation boils down to 
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where [29, 30] 
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4.3. Numerical results 
Conspicuous dependences of  on 1=z+z1 are 

detailed on Figs. 9 a-b, for He(Z=2) and C(Z=6) 
plasmas. The left and decaying portion which is 
mostly T-dependent of v versus 1 shows a rather 
weak -dependence, especially for Carbon, while  
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the increasing density-dependent portion appears 
strongly -resolved. This second  behavior 
documents the fact that in a very dense plasma 
medium the nonpointlike structure of ion Z1 is 
quantitatively perceived. 

Moreover, for both Z = 2 and 6,  ≠ 0  produces 
the smallest ionization, while the bare Coulomb  
 

interaction yields the highest. The ionization 
patterns featured on Figs. 9 show clearly that even a 
finite-T effective e-Z and hydrogenic interaction 
would not be able to reproduce them. These outputs 
demand the implementation of an accurate albeit 
analytic effective quantum defect approach as 
evidence by Eqs. (6,10). 

 
 

 
 

Figure 9 – Ionization = z/I      in a 3 body e-Z-Z1 plasma  
with partial sums involvedin Eq.(41) in terms  of 

11 Z Z    .  
a) He at T = 2.021x105 °K  for  a = 0 and 1;  b) C at T = 1.819x106°K   for  a = 0 and 2 
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5 Conclusions 
 
To summarize, we have demonstrated genuine 

and He-like effective interactions in dense and hot 
plasmas analytically derived through explicit wave 
functions. The novel pseudopotentials have been 
contrasted to their various H-like counterparts (= 
0), and thus display highly significant improvements 
upon the latter. Both approaches converge with 
increasing atomic number and plasma temperature. 
Their respective impact on the ionization parameter 
is also significantly documented, mostly at high 
density in the pressure dominated regime, which 
lead us to expect much more accurate results for the 
equation of state, Hugoniots and transport properties 
of warm dense matter plasmas of present concern, 
especially when alpha is larger than one (see Figs. 
9). An obvious test of choice for these novel He-like 
effective interaction could thus be the determination 
of bremsstrahlung coefficients extending former H-
like ones obtained through expression (18) [31]. 
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Appendix 
ab and ac in the Quantum defect method 

(QDM)[32] 
 
According to Simons [22], it appears convenient 

to start from the Fues-like expression for the 
nonrelativistic hamiltonian for the optical electron-
hydrogenic core. The hydrogenic core is kept in the 
1s ground state. The given hamiltonian thus reads as 
(= m = e =1) 
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subspace pertaining to angular momentum , while 
B is  an adjustable parameter through experimental 
or theoretical inputs. Pertaining radial equations 
thus appear under hydrogen like form. Addressing 
first the bound states set, one has 
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has the solutions 
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and where Lp

q  is a generalised Laguerre polynomial. 
C denotes a normalisation constant while (r) is 
quadratically integrable provided 
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 et  n – l>1                           (A.6b) 

 
We briefly recall the most significant properties, 
(1) The solution of the radial equation (A.2) is 

analytical. 
(2) For a given l series, one single parameter (ab 

or Bb) determines an orthonormal set of eigen 
functions and the corresponding spectrum. 

(3) The choice of ab is related to the definition of 
a quantum defect for a series, as can be seen from 
equation (A.3) 

(4) The Fues model appears as a generalisation 
of the hydrogen case, with the introduction of an 
effective ‘non-integer l’.  

With increasing , the energies and eigen 
functions behave ‘asymptotically’ like those of 
hydrogen. This extension of the polarization model 
≥ 2 [24] toward larger values yield wave functions 
without antisymmetrization albeit distinct for total 
spin S=0 or 1. It is also worthwhile mentioning that 
Bb may be given the rather accurate approximant 
[22] 
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in terms of the Z1 core polarizability in 10-24cm2 and 
hydrogenic radial averages  rp

H
 with p integer 

>0. Similarly, corresponding positive energy 
continuum states show up as eigenstates of Eq. 
(A.1) with a Bc parameter featuring ac 
through 1  2Bc  ac ac 1  ab and ac  are 
related by the Levinson theorem near the ionization 
edge with  

ab n ,  ac(k  0,)            (A.8) 
 
 

Present QDM phase shifts w.r.t. Coulombic 
ones, are then givent as (=Z1/k) [21]  
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          (A.9) 

in terms of ac .  k2  and ac are both dependent on 
Z and S. 
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