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Interparticle interaction potential in two-component plasmas 
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The purpose of this work is to find a pseudopotential of interparticle interaction of charged particles which 
takes into account quantum and collective effects for an ideal and weakly non-ideal plasma in the framework of 
linear dielectric response formalism. In the quantum contribution to the potential the symmetry effects are neg-
lected. Fourier transformations are employed in our studies of the potential. The results demonstrate that th e 
constructed potential is finite at the origin and tends to the Coulomb one when the interparticle distance tends 
to infinity. In other words, it satisfies established theoretical requirements. The potential we obtain is also com-
pared to the well-known Debye-Hückel and Deutsch potentials. The potential we obtain is also compared to the 
well-known Debye-Hückel and Deutsch potentials.  
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1 Introduction 

 
Non-ideal plasmas are systems of charged par-

ticles where the interparticle interactions play a 
main role. It is known, that the interaction of 
charged particles in plasmas is different from the 
Coulomb interaction. If we use the Coulomb poten-
tial, problems related to the divergence of collision 
integrals at scattering angles will appear, since this 
potential does not take into account the collective 
effects, screening and quantum effects. To avoid 
these problems, some effective potentials were in-
troduced in plasma physics. Let us discuss some of 
them. 

The potential energy of the Coulomb interaction 
between two charged particles is given by [1]:  

 
��� =

����
� , (1) 

 
where �� and ��are electric charges of the particles 
involved in the interaction, ris the distance between 
them. Further, as it is usually done in plasma phys-
ics, we will call the potential energy of interaction 
potential.  

Interaction force that is due to the Coulomb po-
tential (1) has a long-range nature. However, long-
range interactionsare substantially changed by col-

lective effects or shielding effects, due to the influ-
ence of surrounding particles. At short distances 
quantum-mechanical effects of diffraction and ex-
change are also important. Thus, the so-called effec-
tive potentials that take into account these effects 
are introduced in plasma physics. Let us consider 
the most common effective potentials:  

a) The self-consistent field potential (the Debye 
- Hückel potential). This potential corresponds to 
the approximation of pair correlations and it is ap-
plicable at small plasma densities: 

 

��� =
����
� ��� �− �

���. (2) 

 
b) The Deutsch potential. It takes into account 

quantum-mechanical effects of diffraction and ex-
change: 

 
���
= ����

� �� − ��
�

�����

� ��������� �� 2 �
− �2
λ��2�� ��2, 

(3) 

 
where λ�� = ����2�������)���is de Broglie ther-
mal wavelength, ��� = �������� � ��)is the 
reduced mass of interacting particles.  

c) The authors of [1] proposed a potential which 
takes into account both screening and quantum-
mechanical effects: 
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� ���� �− �

��
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λ��
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2  The pseudopotential 

 
The purpose of this paper is to obtain an effec-

tive potential, which will analytically take into ac-
count not only the screening effects, but also two 
types of quantum effects: local and statistical.  

This effective potential can be obtained in the 
framework of the linear dielectric response theory. 
The main idea is as follows. We choose some mi-
croscopic potential, to which we want to add a new 
property and determine its Fourier transform. Next, 
the Fourier-image of new potential is determined 
via the ratio of Fourier-images of the microscopic 
potential and the model dielectric function. Finally, 
a new effective potential with necessary properties 
is obtained by the reverse Fourier transformation. 
Let uscarry out these calculations in practice: 

The equation of theeffective or pseudopotential 
in the Fourier space is then the following: 

 
���(�) = ���(�)�����(�, �), (5) 

 
where �����(�, �) is the static dielectric function 
(SDF) of the plasma, ���(�) is the Fourier trans-
form of a micropotential and ���(�) isthe Fourier 
transform of the potential we are looking for.  

Further, it is necessary to select a micropotential 
which possesses a part of the required properties, as 
well as a model for SDF, which complements the 
above properties.  

Here we choose as the micropotential the 
Deutsch potential, which takes into account local 
quantum-mechanical effects (without the exchange 
contribution). ItsFouriertransformis simple: 

 

�(�) = �4��
�� − 4��

���� + ���. (6) 

 
We acquire the SDF model including quantum-

statistical effects from [2]: 
 

�(�, �) = 1 + 1
(�/��)� + (�/��)�. (7) 

Here  
��� = 4�������,���� = �� + ∑ ������ , ��� =

1� ���/ℎ�(���� + ∑ �������� ). 

Now, on the basis of these formulas, we carry 
out the inverse transform: 

 

���(�) = 1
(2�)� � �����(�) ���(� ��).  (8) 

 
Thus weobtain the following expression for the 

potential: 
 

���(�) = ����
� �� ���(−� ���)

+ �� ���(−� ��)
− �� ���(−� ��)�, 
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where 
 

� = 1 − �
∆  ;   ��,� = ��,�(��,� − �)
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∆= � + � − 1; ��,� = ���

�  ;� = √1 − 4 � ; 
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This potential is presented in figures 1-2 for var-

ious dimensionless coupling, Г and density, rs pa-
rameters, 

Г = ��

���� , 
 

where  a =  � �
�����/�

, 
 

�� = ����

ћ  . 
 
Comparison between potentials is displayed in 

figures 3-5 for various Г, rs and degeneracy parame-
ter,�, 

� = ���
��

= 2 � 4
���

�/� ��
Г. 

 
 

3  The plasma thermodynamic properties 
 
A system in a thermodynamic equilibrium can 

be described by using the measured macroscopic 
parameters, such as pressure and internal energy. 
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From energy we can derive other thermodynamic 
values, such as heat capacity, free energy, etc. 

It is well known, that the internal energy can be 
calculated as 

 
� � �

����� � ��, 
 

where N is the total number of particles in the sys-
tem and the correlation energy �� is determined via  
the radial function distribution���(�) (RDF). In 
turn, the plasma pressure is also determined through 
the RDF. Let us write these two equations down; 
they link the effective potential and the macro pa-
rameters: 

а) The correlation energy of the plasma: 
 

�� � ���� ���
���

�

�
�����(�)���(�)���� 

 

 
(10) 

where V is the volume of the system, ���(�) is the 
effective potential, ���(�) is the radial distribution 
function of the system. 
 

 

 
Figure 1 – The hydrogen plasma potential plots (9). 1 
stands for the electron-electron interaction; 2 for the 

electron-protoninteraction, 3 for the proton-proton inte-
raction at the parameters: Г = 3, rs =0.5. 

 

Figure 2 – As in Figure 1 but for Г = 0.5, rs =5. 
 

 

 
 

Figure 3 – As in Figure 1 but for Г =1, rs = 2. 
 
 

 
Figure 4 – As in Figure 1 but for Г=1, rs = 2. 
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Figure 5 – As in Figure 1 but for Г=1, rs = 2. 

 
 

 
Figure 6 – Correlation energy of plasma. � = ��. 1 cor-

responds to the data of [11], 2 –to the Debye-Hückel 
theory, 3 – to [10], 4-to formula (10) with (9). 

 
 

 
Figure 7 – As in Figure 6 but for � = �. 

 
 
 

 
 

Figure 8 – Pressure isotherms. T=125000K. 1 – formula 
(11) with (9), 2 – PIMC data [8], 3 – HFMW. 

 
 
Our results for the correlation energy are pre-

sented in Figures6 and 7 for the hydrogen plasma 
vs. the coupling parameter Г. Comparison between 
the data of the [11] and those of other theories is 
displayed in these figures as well. In the present 
work, the bound states were considered within the 
HNC approximation. It can be seen that formula 
(10) with the potential (9) is in an agreement with 
the simulation data. 

b) The pressure of the plasma or the plasma eq-
uation of state (EOS): 

 

� = ��� −
��
3 � ���

���

�

�
��
����(�)
�� ���(�)���� 

 
(11) 

 
where ��� = ∑ ��� ���is the ideal gas pressure. 

Figure 5 represents the pressure isotherms for 
125kK. These isotherms were derived in the frame-
work of the PIMC simulation [8]. One can observe, 
hence, that the potential (9) is in a relatively good 
agreement with the experimental data found in the 
Hartree-Fock and Montroll-Ward (HFMW) approx-
imations, especially at small values of the coupling 
parameter. 

 
4  Conclusions 

 
An effective pair interaction potential for ideal and 

weakly non-ideal plasmasis obtained. It takes into ac-
count not only screening and dynamic quantum effects, 
but also statistical quantum effects. It is in a good 
agreement with the Deutsch potential at high tempera-
ture. Also, we used this potential for the calculation of 
thermodynamics properties of plasma and for the com-
parison with some simulation data. 
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