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This review article is based on a number of our research papers complemented by some mathematical 
developments which are usually not included to texts in Physics, and which can permit a reader to enter 
into the details of the self-consistent method of moments, recently suggested, and understand how it could 
be improved even further. The idea of the method of moments which appeared some 35 years ago is to 
employ several sum rules and other exact relations to determine the dynamic properties of strongly coupled 
classical or partially degenerate plasmas. Now this approach is complemented by new empirical and 
mathematical observations which permit to determine dynamic characteristics of strongly coupled 
completely ionized classical one-component plasmas without any data input from simulations or direct 
experiments and express the dynamic properties of the above systems entirely in terms of their static 
characteristics like the static structure factors. The obtained results are quite satisfactory and promising.  
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1 Introduction

The challenge of the contemporary statistical 
plasma physics is the description, analytical and 
numerical, of the transition from collisionless to 
collision-dominated regimes in different Coulomb 
systems, of the crossover from classical to Fermi 
liquid behavior in dense plasmas [1, 2]. We refer to 
warm and hot dense matter or strongly coupled 
plasmas characterized by a wide range of variation of 
temperature (104 −107 K) and mass density (10−2 −104

g/cm3) spanning a few orders of magnitude. Under 
such conditions thermal, Coulomb coupling, and 
quantum effects compete between them and impede 
the construction of a bridge theory capable of 
including of all these effects into the description of 
static, kinetic, and dynamic properties of the above 
systems of high relevance for inertial fusion devices 
[3] and advanced laboratory studies, e.g., in ultracold 
plasmas [4], etc.

The standard (electron) coupling and degeneracy 
parameters defined, respectively, as

2 /e aβΓ = , 𝐷𝐷𝐷𝐷 = 𝛽𝛽𝛽𝛽𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹  , (1) 

vary in strongly coupled plasmas as follows:

3(4.9 10 , 490)−Γ ∈ × , 

3 4(1.4 10 ,1.4 10 )D −∈ × × .

We employ above the Brueckner parameter

2/ (6.5 10 ,6.5)s Br a a −= ∈ × ,

a = (4πn/3)−1/3, aB, and EF are the electron 
Wigner-Seitz, Bohr radii and the Fermi energy, n
being the number density of electrons; besides, the 
temperature T = (kBβ)−1, 

2/39
1.84158428

2 4s s

D
r r

πΓ Γ
= = 

 
 

.

Throughout the text we will use the 
dimensionless wavenumber q = ka. 

Despite the lack of small parameters, static 
structural and even kinetic characteristics of strongly 
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coupled plasmas are relatively easy to determine 
numerically, see, e.g., [2, 5]. Nevertheless, currently, 
there are no first-principle physical approaches
capable of producing reliable results on dynamic 
properties of such systems within the above gaps 
between ideal-gas and solid-state conditions. Good 
agreement in a relatively wide realm of variation of 
Γ and/or D is finally achieved using up to four 
adjustable parameters [6]. Numerical data on the 
dynamic local-corrections remains unexplained 
theoretically [7].

The well-known model of the Quasi-Localized 
Charge Approximation [8] satisfies only the 
interaction-related sum rule and fails to describe the 
energy dissipation processes.

We suggest an alternative mathematical approach 
capable of taking all sum rules (which might be 
considered complementary conservation laws) into 
account automatically and to include into the scheme 
the collective mode decay. Specifics of physical 
systems are included into the sum rules calculated 
independently and rigorously using standard methods 
of quantum statistics, say within the Kubo linear-
reaction theory. This approach seminal papers were 
published more than 30 years ago [9]; further 
development was proposed in the papers [10-13], and 
the book [14]. They were based on the classical 
monographs [15] and [16].

A new, self-consistent version of this method was 
suggested recently [17] applied to the direct 
determination of dynamic properties of one-
component classical strongly coupled plasmas in 
terms of their static ones, without any adjustment to 
the dynamic data. The validity of the approach was 
confirmed by comparison with available simulation 
results. In addition, the robustness of the method was 
confirmed by applying several schemes of 
calculation of the plasma static structure factor, 
which provided results in good agreement with each 
other, within the precision of the simulations 
themselves.

The method of moments is based on the 
Nevanlinna theorem which establishes a unilateral 
correspondence between the dynamic characteristic 
in question and a non-phenomenological 
(Nevanlinna parameter) function of a certain 
mathematical class, see below. The above results 
were achieved in [17] and numerous relevant 
publications within a significant simplification: the 
Nevanlinna parameter function (NPF) was 
approximated by its static value. This simplification, 
in one-component plasmas, is equivalent [10] to the 
substitution of the dynamic local-field correction by 

its static value. It also impedes the extension of the 
approach to low coupling systems traditionally 
described within the random-phase approximation 
(RPA).

The aim of the present paper is two-fold: (i)
provide a detailed introduction into the mathematical 
aspects of the method of moments and (ii) suggest 
and check some model expressions for the NPF both 
in classical and quantum–mechanical settings. The 
liquid systems we consider are presumed to be in 
thermal equilibrium and unmagnetized. Generali-
zations to more complex systems can be carried out 
within the matrix method of moments [14].

The paper is organized in the following way. In 
the next Section we provide mathematical details of 
the moment approach. Then, some dynamical models 
of the NPF are proposed and analyzed. Finally, we 
arrive to some conclusions important for further 
development of the method.

2 The mathematical introduction.

2.1 Nevanlinna (response) functions and their 
mathematical properties [4].

Definition 1 (The Nevanlinna class of functions 
ℜ): A function F (z) ∈ ℜ if

1. F (z) is analytic in Im z > 0;
2. Im F (z) ≥ 0 in Im z > 0.
Definition 2 Let t ∈ ℝ be a random variable with 

a distribution function σ(t). If

( ) ( )
t

t f s dsσ
−∞

= ∫ (2)

the function f(t) is called the probability density 
function, p.d.f.. Since σ(t) is, by definition, a non-
decreasing function, f(t) ≥ 0 for any real t.

Claim 3. The Nevanlinna functions are 
determined by the Riesz – Herglotz transform:

2

1
( ) ( )

1

t
F z az b dg t

t z t

∞

−∞
= + + −

− +

  
 ∫ , (3)

where {a,b} ∈ ℝ , a ≥ 0 and g(t) is a non-decreasing 
bounded function (distribution) such that

2

( )

1

dg t

t

∞

−∞
< ∞

+
∫ .
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Claim 4 Notice that we can always choose the 
function g(t) so that b was equal to

2

( )
1
tdg t

b
t

∞

−∞
=

+∫ ;

and that
а = 0.

Definition 5 (The class of functions ℜ0): A 
function G(z) ∈ ℜ0 if G(z) ∈ ℜ and

( )
lim 0
z

G z

z→∞

= , Im 0z > , (4)

so that for such functions from (3) we have:

( )
( )

dg t
G z ih

t z

∞

−∞
= +

−
∫ , 0h > , (5)

where the non-negative parameter h does not depend 
on z, but might depend on other parameters, e.g., in 
Physics, on the wavenumber.

2.2 The classical Hamburger problem of 
moments

Definition 6 The real numbers

( )m
m t d tµ σ

∞

−∞

= ∫ , 0,1, 2,...m = (6)

are the (power) moments of the distribution σ(t). If 
the distribution σ(t) is differentiable and f(t) = σ′(t) is 
symmetric, all odd-order moments (6) vanish.

Let us summarize some notions and results of the 
classical theory of moments [18-20].

The Hamburger problem is formulated in the 
following way.

Problem 7 Given a set of real numbers 
{µ0,µ1,µ2,...}, find all distributions σ(t) such that

( )m
mt d tσ µ

∞

−∞

=∫ , 0,1, 2,...m = (7)

The Hamburger moment problem is solvable, i.e., 
there exists at least one distribution (p.d.f.) which 
satisfies (7), if and only if the given set of numbers 

is non-negative, i.e., if the Hankel matrix 
. If the problem is solvable, it can 

have a unique solution (a determinate problem) or an 
infinite number of solutions (an indeterminate 
problem).

Definition 8. Notice that if σ(t < 0) ≡ const (i.e., 
if f(t < 0) ≡ 0), we have the Stieltjes moment problem, 
and if σ(t) ≡ const (f(t) ≡ 0) for t < a, t > b, a,b ∈ ℝ ,
we deal with the Hausdorff problem finite interval 
moment problem.

Theorem 9 [21] A Hamburger moment problem 
(7) is solvable if 

, 0det( ) 0m
m i j i jµ + =∆ = ≥ , 0,1, 2,...m =

The problem has an infinite number of solutions 
if and only if

, 0det( ) 0m
m i j i jµ + =∆ = > , 0,1, 2,...m =

The problem (7) is determinate if and only if

0 0,..., 0k∆ > ∆ > , 1 2 ... 0k k+ +∆ = ∆ = = .

Claim 10. The set of solutions of an 
indeterminate problem is in a one-to one 
correspondence with a certain subset of the class of 
Nevanlinna functions [18]; this correspondence is 
described by the Nevanlinna formula, see below.

Claim 11. A truncated Hamburger moment 
problem [18], i.e., a moment problem with a finite set 
of given numbers, i.e., {𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚}𝑚𝑚𝑚𝑚=0

2𝜈𝜈𝜈𝜈 , 𝜈𝜈𝜈𝜈 = 0,1,2 is 
solvable if the Hankel matrix (𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛)𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛=0

𝜈𝜈𝜈𝜈 > 0, 
[22], see also [23] and [24]. In the degenerate case 
of a singular Hankel matrix (𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛)𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛=0

𝜈𝜈𝜈𝜈 the 
problem of moments (under some special conditions 
established in [25] and [23], [24]) has a unique 
solution described in [23], [24].

Theorem 12 [26, 21, 19] A sufficient condition 
that the Hamburger moment problem (6) be 
determinate is that (Carleman’s criterion)
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1/2
2

1

m
m

m

µ
∞

−

=

= ∞∑ .

Example 13. The p.d.f.

( )
1/

( ; ) exp
1

2
f t t

α
α

α

αγ
γ γ

α

= −
Γ 
 
 

, , 0α γ >
(8)

where Γ(z) is the Euler Γ function, has an infinite 
number of moments for any positive α:

2
2

2 /

2 1

( ; ) ( )
1

m
m

m

m

t f t dtα
α

αµ α γ
γ

α

∞

−∞

+
Γ

= =
Γ

 
 
 

 
 
 

∫ ,

2 1 ( ; ) 0mµ α γ+ = , 0,1, 2,...m =

(9)

but the Hamburger moment problem for the set of 
numbers

2/ 4/

3 5

1,0, ,0, ,0,...
1 1α α

α α

γ γ
α α

Γ Γ

Γ Γ

    
               
    

, (10)

has, as it stems from the Carleman criterion, a unique 
solution, which is the p.d.f. (8), if α > 1, in particular 
the Gaussian density , and an 
infinite number of solutions if α ≤ 1. In this latter 
case, all solutions of the moment problem are 
described by the Nevanlinna formula ([19]), see 
below.

Other examples of sets {µm}m=0∞ which generate 
indeterminate moment problems are provided in [20].

In (solvable) problems where we already have at 
least one p.d.f. with a set of moments, like the 
problems we are interested in here, the only question 
which arises is the one of uniqueness of the solution 
of the problem of reconstruction of a (one-
dimensional) p.d.f. by its power moments, {µm}m=0ν .

2.3 Orthogonal polynomials and the Nevanlinna 
formula

Theorem 14. (Nevanlinna) There is a one-to-one 
correspondence between all solutions of the 

Hamburger problem (7), or all complex Nevanlinna 
functions

( )
( )

d t
z

t z
σ

ϕ
∞

−∞

=
−∫ , (11)

and all Nevanlinna functions R(z) ∈ ℜ0 such that

1

1

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
n n

n n

d t E z R z E z
z

t z D z R z D z
σ

ϕ
∞

+

−∞ +

+
= =

− +∫ . (12)

This last formula is called the Nevanlinna 
formula.

Definition 15 Here {𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙(𝑧𝑧𝑧𝑧)}𝑙𝑙𝑙𝑙=0∞ are 
orthonormalized polynomials with respect to the 
measure dσ [20]:

( ) ( ) ( )n m nmD t D t d tσ δ
∞

−∞

=∫ , , 0,1,...,n m = (13)

and En (z) are their conjugate polynomials:

( ) ( )
( ) ( )n n

n

D z D t
E z d t

z t
σ

∞

−∞

−
=

−∫ . (14)

Precisely

0

0

1
( ) ,D t

µ
=

1 1,−∆ = 0 0µ∆ = ,

0 1

1

1

2 1

1

1
( ) det ,

l

l

l

l l
l

l l

t
D t

t

µ µ

µ µ

µ µ

−

−

−

=
∆ ∆

 
 
 
 
 
 





   



(15)

0

2

det ,
l

l

l l

µ µ

µ µ

∆ =

 
 
 
  



  



1,2,...l =

(16)

Let us point out the properties of these 
orthonormalized polynomials:
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Claim 16. It can be easily seen that both sets of 
polynomials do not depend on the distribution we 
seek, they are determined by the moments only:

0

0

1
( )D z

µ
= , 0

1

00

1
( )

z a
D z

bµ

−
= ,

( ) ( ) ( )
( )

2

2 2 2

0 2 1 1 2 3 0 3 1 2

2

0 2 1 2

( )D z

z zµ µ µ µ µ µ µ µ µ µ

µ µ µ

=

− + − + −
=

− ∆

,

0 ( ) 0E z = , 
0

1

0

( )E z
b

µ
= ,

( ) ( ) ( )

( )

2

2 2

0 0 2 1 0 2 1 1 0 1 2 0 3

2

0 2 1 2

( )E z

zµ µ µ µ µ µ µ µ µ µ µ µ µ

µ µ µ

=

− + − + −
=

− ∆

(17)

In addition:
1. The zeros of the polynomials Dl(t) and El(t),

l ∈ ℕ, are all real;
2. The zeros of the polynomials Dl(t) and Dl-1(t),

l ∈ ℕ, are all real and they alternate. The zeros of the 
polynomials Dl(t) and El(t), l ∈ ℕ, alternate;

3. The polynomials Dl(t) and El(t), l ∈ℕ, can be
expressed in terms of each other:

1 1 1( ) ( ) ( ) ( )l l l l l l lzD z b D z a D z b D z− − += + + ,
1, 2,...l =

(18)

1 1 1( ) ( ) ( ) ( )l l l l l l lzE z b E z a E z b E z− − += + + ,
1, 2,...l =

(19)

where

, ( ) ( ) ( )l l l l la a tD t D t d tσ
∞

−∞

= = ∫ ,

1 1
, 1 1( ) ( ) ( ) l l

l l l l l

l

b a tD t D t d tσ
∞

− +

+ +

−∞

∆ ∆
= = =

∆∫ ,

1, 2,...l =

4. They satisfy the Liouville-Ostrogradsky (or
Schwarz-Christoffel) formula:

1 1

1

1 2

( ) ( ) ( ) ( )

1
l l l l

l

l l l

D z E z D z E z

b

− −

−

− −

− =

∆
= =

∆ ∆

,

2,3,...l =

(20)

Claim 17. The latter relation permits to define 
these polynomials in the recurrent way. Indeed, since

0

0

1
( )D z

µ
= , 0

1

00

1
( )

z a
D z

bµ

−
= ,

0 ( ) 0E z = , 
0

1

0

( )E z
b

µ
= ,

we have that

( ) ( ) ( )
( )

2

2 2 2

0 2 1 1 2 3 0 3 1 2

2

0 2 1 2

( )D z

z zµ µ µ µ µ µ µ µ µ µ

µ µ µ

=

− + − + −
=

− ∆

,

( ) ( ) ( )

( )

2

2 2

0 0 2 1 0 2 1 1 0 1 2 0 3

2

0 2 1 2

( )E z

zµ µ µ µ µ µ µ µ µ µ µ µ µ

µ µ µ

=

− + − + −
=

− ∆

and so on. This procedure can be easily programmed.
Claim 18. It can be easily checked that the 

polynomials Dℓ(z), ℓ = 0,1,2 are all normalized to 
unity and mutually orthogonal.

Claim 19. The set of orthogonal (but not 
normalized) polynomials can be 
constructed from the canonical basis of the Hilbert 
vector space of polynomials,

{ }21, , ,...t t ,
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but with the scalar product and the norm defined as

, ( )g( ) ( )f g f t t d tσ
∞

−∞

= ∫ , ,f f f= ,

by means of the standard Gram-Schmidt procedure. 
Then,

0 ( ) 1D t = , 1
1

0

( )D t t
µ

µ
= − ,

2
2 1 2 0 3 2 3 1

2 2 2
1 0 2 1 0 2

( )D t t t
µ µ µ µ µ µ µ

µ µ µ µ µ µ

− −
= − +

− −
,

2
3 ( ) ( )D t t t At B= + + ,

0 ( ) 0E t = , 1 0( )E t µ=

1 2 0 3
2 0 12

1 0 2

( )E t t
µ µ µ µ

µ µ
µ µ µ

−
= − +

−

 
 
 

,

3

2 1 2 1

0

0 0 0

( )E t

t t A A B
µ µ µ

µ
µ µ µ

=

= + + + + +
    
    
    

(21)

where

( ) ( ) ( )
( ) ( ) ( )

2 2 2

1 3 2 4 3 2 0 4 5 1 0 2

2

2 2 0 4 3 0 3 1 2 1 4 1 2 3

A

µ µ µ µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ µ µ µ µ

=

+ − + − −
=

− + − + −

( ) ( ) ( )
( ) ( ) ( )

2

5 1 2 0 3 3 1 4 2 3 4 2 0 4

2

2 2 0 4 3 0 3 1 2 1 4 1 2 3

B

µ µ µ µ µ µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ µ µ µ µ

=

− − − − −
=

− + − + −

An important observation can be deduced from 
the expressions (15) and (21): both sets of orthogonal 
polynomials do not depend on the distribution we 
seek, they are determined by the moments only. In 
other words, these polynomials are known as soon as 
the moments are.

2.4 Canonical and degenerate solutions of a 
solvable truncated Hamburger moment problem

Claim 20. It is clear that, at least, due to 
numerical and measurement problems, we never 
know a large number of moments. Besides, as we will 
see, in certain physically important problems, this 
number is limited by physical phenomena.

To satisfy the moment conditions

( ) ( )m m
m t d t t f t dtµ σ

∞ ∞

−∞ −∞

= =∫ ∫ ,

0,1, 2,..., 2m ν= , 0,1, 2,...ν = ,

(22)

one can first consider a step-like distribution

2

0

( ) ( )j j
j

d t m t t dt
ν

σ δ
=

= −∑ (23)

with the density which actually consists of 2ν + 1 
point masses located at some distinct points of the 
real axis . This is the so called canonical 
solution of the problem. Then the assumption (23) 
can be substituted into the conditions (22) and the 
masses can be obtained directly from the 
system with the determinant which is the Van der 
Monde determinant of an arbitrary set of distinct 
numbers :

0 0

0 1 2 1 1

2 2 2
0 1 2 2 2

1 1 1 m

t t t m

t t t m

ν

ν ν ν

ν ν ν

µ

µ

µ

=

     
     
     
     
     
     





     



(24)

In other words, we obtain an infinite number of 
canonical solutions parametrized by the latter set of 
points of the real axis.

Example 21. Gaussian distribution exp(−t2). 
Consider a truncated problem generated by the 
moments

( )2expm
m t t dtµ

∞

−∞

= −∫ , 0,1, 2,..., 2m ν= ,

0µ π= , 1 0µ = , 2 2
π

µ = .
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Then the system (24) becomes:

0

0 1 2 1

2 2 2
0 1 2 2

1 1 1

0

/ 2

m

t t t m

t t t m

π

π

=

    
    
    
         

Its solution is just:

( )
( )( )

( )
( )( )

( )
( )( )

1 2

2 0 1 0
0

0 2
1

2 1 0 1

2

0 1

1 2 0 2

2 1

2 1
.

2

2 1

x x
x x x x

m
x x

m
x x x x

m
x x

x x x x

π

+

− −

+
=

− −

+

− −

 
 
  
  
        
 
 

Claim 22. Nevertheless, for the moment set 
{µ0,0,µ2}, there exists the following canonical 
solution of the moment problem where

( )m
mt f t dt µ

∞

−∞

=∫ , 0,1, 2m = ,

[ ]0( ) ( ) ( )
2

f t t t
µ

δ ξ δ ξ= − + + ,  
2 2

0

µ
ξ

µ
=

Claim 23. While, for the moment set 
{µ0,0,µ2,0,µ4}, there exists the following canonical 
solution of the moment problem

( )m
mt f t dt µ

∞

−∞

=∫ , 0,1, 2,3, 4 :m = ,

[ ]
2 2

1 1

0 2 22 2

2 2

( )

1 ( ) ( ) ( )
2

f t

t t t
ξ ξ

µ δ δ ξ δ ξ
ξ ξ

=

= − + − + +
  
  
  

where

2 2
1

0

µ
ξ

µ
= ,  

2 4
2

2

µ
ξ

µ
=

This solution will be interpreted later, e.g., in 
Chapter 3.2 dedicated to the investigation of one-
component plasmas. The positivity of the central 
feature intensity, (1 − (ξ1/ξ2)2) follows from the 
Cauchy-Schwarz inequality.

Example 24. Degenerate case. Consider now a 
degenerate truncated problem generated by the 
moments

0 1µ = , 1 2µ = , 2 2µ = (25)

whose Hankel matrix

1

1 2

2 2
H =

 
 
  

,

is obviously singular (detH1 = 0). In this case the 
solution of the problem is unique, it can be found in 
the following way. Find the null-space basis of the 

matrix H1, in our case it is a vector  
0

1

2
:

1

ξ

ξ

−
=

   
     

with ξ1 ≠ 0, construct the polynomial

1 0( )p t tξ ξ= + ,

calculate its zeros (in our case we have only one zero 
t0 = √2), these are the locations of the masses 
in the degenerate solution

2

0

( ) ( )j i
i

d t m t t dt
ν

σ δ
=

= −∑

and determine the corresponding masses from the 
moment conditions (22). Particularly, for the 
moments (25) we have

( )( ) 2d t t dtσ δ= −

which automatically satisfies the conditions

0 1µ = , 1 2µ = , 2 2µ =

Claim 25. Certainly, in physical problems we are 
basically interested in noncanonical, continuous 
solutions Nevertheless, some physical interpretation 
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of the canonical solutions will be discussed as well. 
To show how the moment method works in this case, 
let us consider dynamic properties of the intrinsically 
classical one – and two – component completely 
ionized hydrogen – like plasmas in thermal 
equilibrium.

2.5. Non-canonical solutions of a truncated 
Hamburger problem. Application of the Nevanlinna 
formula

In physical problems we deal with further, we are
interested in continuous solutions of truncated 
Hamburger problems generated by positive sets of 
power moments

{ }0 1 2 2 1 2, , ,..., ,ν νµ µ µ µ µ− ,  0,1, 2,...ν = ,

basically, with ν = 2 and with the so called immaterial 
elements µ2ν+1 and µ2ν+2. Let us see how the 
Nevanlinna formula in this case provides a 
continuous, non-canonical, solution of the problem: 
construct the p.d.f. f (t) such that

( )l
l t f t dtµ

∞

−∞

= ∫ , 0,1, 2,..., 2l ν= ,

0,1, 2,...ν = ,
(26)

The Nevanlinna formula in this case takes the 
following form:

1

1

( )
( )

( ) ( ) ( )
( ) ( ) ( )

f t
z dt

t z

E z R z E z
D z R z D z

ν ν ν

ν ν ν

ϕ
∞

−∞

+

+

= =
−

+
= −

+

∫
, (27)

Claim 26. Observe that the Nevanlinna 
parameter function Qν(z) ∈ ℜ0 effectively depends 
on the number of moments involved. Nevertheless, 
the asymptotic expansion of the Cauchy transform of 
the density in question will satisfy the moment 
conditions (26) independently of our choice of this 
parameter function.

Proof. Indeed, along any ray within the upper 
half-plane Imz > 0,

2 12

0

2 2
2

1
0

2 22

1
0

( )

1 ( )

1

1 1
( )

1 1
( )

1

z

l

l

l

l
l

l
l

l

z

f x
dx

xz
z

x
f x O dx

z z z

x f x dx O
z z

O
z z

νν

ν
ν

νν

ϕ

µ

∞

→∞−∞

+∞

=−∞

+∞

+
= −∞

+

+
=

→ ∞ =

= − −
−

+ =

= − + =

= − +

    −         

 
 
 

 
 
 

∫

∑∫

∑ ∫

∑



(28)

In other words, the contribution related to the 
Nevanlinna parameter function Qν (z), due to the 
additional property (4), will appear in the asymptotic 
expansion (28) only in the correction of excessive 
order 2ν + 2. Now, by definition, on the real axis Imz 
= 0,

0

1

1

( )
( ) Im lim

( )
Im . . ( )

( ) ( ) ( )
( ) Im

( ) ( ) ( )

f s ds
t

s t i

f s ds
PV if t

s t

E t R t E t
f t

D t R t D t

η

ν ν ν

ν ν ν

ϕ
η

π

π

∞

↓
−∞

∞

−∞

+

+

= =
− −

= + =
−

+
= = −

+

 
 
 

 
 
 

∫

∫ ,

P.V standing for the principal value of the 
integral. Let

( ) Re ( ) Im ( )R t R t i R t= + ,

( ) Re ( ) Im ( )R t R t i R t= −

and observe that, also by definitions (15) and (16), we 
have:
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0 1

1 1

1

1

1 2 1 2

1

2 2 1

1

1
( ) det

t

D t

t

t

ν ν

ν ν

ν

νν ν

ν ν ν

ν

ν ν ν

µ µ µ

µ µ µ

µ µ µ

µ µ µ

−

+

+

+

− −

+

+

=
∆ ∆

 
 
 
 
 
 
  





    





so that the algebraic minor, (subdeterminant) of the 
Dν+1 (t) polynomial leading term is just the Hankel 
determinant

0 1

1 1

1 2 1 2

det

ν ν

ν ν

ν

ν ν ν

µ µ µ

µ µ µ

µ µ µ

−

+

− −

∆ =

 
 
 
 
 
 





   



, (29)

Hence,

1 1

1

( ) ( )vP t P tν
ν

ν

+ +

+

∆
=

∆
,

1( ) ( )v vP t P tν

ν

−∆
=

∆

(30)

where {𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)}𝑙𝑙𝑙𝑙=0𝜈𝜈𝜈𝜈+1 are orthogonal monic polynomials 
with respect to the measure density f (t), see the Claim 
19. Thus 1, due to the Liouville-Ostrogradsky
equality (20), the ”problem” is that the determinant 
∆ν+1 (see (29)) contains the ”immaterial” moments 
µ2ν+1 and µ2ν+2, which we do not know. They might 
even diverge! This spurious contradiction is 
immediately resolved by taking into account the 
normalization of the orthonormalized polynomials 
{𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)}𝑙𝑙𝑙𝑙=0𝜈𝜈𝜈𝜈+1: use instead the monic polynomials
{𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)}𝑙𝑙𝑙𝑙=02𝜈𝜈𝜈𝜈 :

1 Remember that for any z ∈ C, Imz=(z-z*)/2i, where z* is 
the complex conjugate of z.

2

11 1

2

1 1
1

1

1

2

1 1

Im ( )
( )

( ) ( ) ( )

Im ( )

( ) ( ) ( )

Im ( )
0

( ) ( ) ( )

R t
f t

P t R t P t

R t

P t R t P t

Q t

P t Q t P t

ν ν
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ν ν

ν ν
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ν ν ν

ν ν
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+− +

− +
−

+

+

− +

∆
= =

+∆ ∆

∆
= =

∆ ∆ ∆ ∆
+

∆ ∆

∆
= >

∆ +

(31)

where

1 1( ) ( )Q t R t ν ν
ν ν

ν

− +∆ ∆
=

∆

Notice that due to the positivity of the moment 
sequence (26), the Hankel determinants ∆ν-1 and ∆ν
are all strictly positive.

Thus, the immaterial members of the moment 
sequence are eliminated due to the renormalization 
procedure. What matters for the physical applications 
is that the poles of the reconstructed density f(z), Imz 
< 0 are the roots of the ”polynomial” equation

1( ) ( ) ( ) 0P z Q z P zν ν ν+ + = (32)

which ”starts” from zv+1, i.e., if, in accordance with 
the ℜ0-version of the Riesz-Herglotz formula (5), we 
approximate the Nevanlinna parameter function 
(NPF) qv (z) by its static value:

( ) ( 0)Q z Q z ihν ν= = = (33)

equation (32) acquires the form of the genuine 
polynomial equation of the order v+1, which can be 
easily solved at least numerically. Nevertheless, our 
aim here is to study the possibilities of employment 
of frequency-dependent NPFs.

3 Solution of physical problems by the method 
of moments.

Here we will study the dynamic properties of 
dense one – and two-component plasmas in the 
context of the truncated Hamburger problem. We 
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start with the calculation of power moments on the 
basis of the Kramers-Kronig relations and the Kubo 
linear theory.

3.1 The moments.

The physical characteristics of the system 
interfere, within the method of moments, basically
through the sum rules. If we presume the existence of 
the Coulomb or Coulomb-like system inverse 
(longitudinal) dielectric function, ε −1 (k,ω) (IDF), 
the sum rules are effectively the power frequency 
moments of the (positive) even loss function L(k,ω)
= −Imε −1 (k,ω)/ω:  

1
( ) ( , ) ,C k L k dν

ν ω ω ω
π

∞

−∞

= ∫
0,2,4.ν =

(34)

Notice that the odd order moments vanish due to 
the symmetry of the loss function. Let us also 
introduce the characteristic frequencies

( ) ( )
( )

2 2
1

0

C k
k

C k
ω = , ( ) ( )

( )
2 4
2

2

C k
k

C k
ω = (35)

In a classical plasma, due to the fluctuation-
dissipation theorem (FDT), the dynamic structure 
factor (charge density-charge density) 

2

( , ) ( ) ( , )
3

eq n
S q B L qω β ω ω

π
=

Γ
 , 

(36)

where

1

0
( ) (1 exp( )) 1

w
B w w w −

→
= − − ≅ (37)

is the Bose factor. Both dynamic functions, L(q,ω)
and S(q,ω), behave at low frequencies and/or in 
classical systems in a similar way. Hence, the 
moments {C0(q),0,C2,0,C4(q)} are effectively 
proportional to the moments of the dynamic structure 
factor (DSF).

Since the IDF is a genuine response function [27]
and thus satisfies, by virtue of the causality principle, 
the Kramers-Kronig relations,

1
1 1 Im ( , )
( , ) 1

k
k z d

z
ε ω

ε ω
π ω

−∞
−

−∞

= +
−∫ ,

Im 0z > ,

(38)

and since the imaginary part Imϵ−1 (q,ω) is an odd 
function of frequency and thus vanishes at ω = 0, we 
can write:

1

1

0

( ,0)

1 Im ( , )
1 1 ( )

k

k
d C q

ε

ε ω
ω

π ω

−

−∞

−∞

=

= + = −∫

(39)

We conclude that

1
0 ( ) 1 ( ,0)C k kε −= −

The above relations permit to study the 
asymptotic expansion of the IDF along any ray in the 
upper half-plane:
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                  

∫

∫
(40)

Thus,
1( , ) 1q zε − → ∞ ≅ .

Similarly, for the dielectric function itself, 
inverting the last formula,

( )2 2 22
21

2 4

( )
( , ) 1 ...p pp

z

q
q z

z z

ω ω ωω
ε −

→∞

−
≅ − − + (41)

It stems directly from the f-sum rule [27] that 
even if the interparticle interaction might be different 
from the bare Coulomb one and is described by an 
effective potential [15],
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2 2
2

1
( , ) pC L k dω ω ω ω

π

∞

−∞

= ≡∫ (42)

where ωp is the system plasma frequency.
It has been established [28,29] and further, within 

the Kubo linear-reaction theory and using the second-
quantization technique [14], generalized for a 
multicomponent Coulomb system with the pairwise 
interaction energy Fourier transform,

2

2

4
( ) ( )ab ab

e a
W q q

q
π

ζ= ,

( ) ( )ab baq qζ ζ= , 1 2, , , ,...,a b e i i=
(43)

that the fourth moment and, hence, the second 
characteristic frequency contains four contributions:

[ ]

2
2

2

( )

( ) ( ) ( )p ee

q

q K q U q H

ω

ω ζ

=

= + + +
, (44)

The kinetic contribution
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( )
( )

12 s

q F q
K q

D r
η

= +
Γ

(45)

and the coupling contributions are:
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( )22 2 2

3
( , ) ( )

p q

ee ee
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Here,

0

( )
exp( ) 1

t
F dt

t

µ

µ η η

∞

=
− +∫

is the order-µ Fermi integral, and η is the 
dimensionless chemical potential of the electronic 
subsystem, which should be determined by the 
normalization condition

3/2
1/2

2
( ) .

3
F Dη =

Notice that the e−i contribution is q-independent. 
Terms of the order of the ratio m/M were neglected to 
obtain these simple expressions. To reiterate that we 
are able to evaluate the moments independently with 
a precision determined by the numerical scheme 
employed to compute the partial static structure 
factors, see the paper [17] for details. Notice also that 
in the hydrodynamic limiting case

( )2 2
2 ( 0) 1pq Hω ω→ ≅ + (47)

while at short distances we recover the single-particle 
behavior:

2 4
2
2 ( )

12
p

s

q
q

r

ω
ω →∞ ≅

(48)

It is obvious that in one-component plasmas, 
classical or not, the electron-ion contribution H = 0.
In the same way, higher order moments can be 
calculated, e.g. in model Coulomb systems with the 
effective potential (43) different from the bare 
Coulomb one. But in purely Coulomb systems 
containing species of different masses, the sixth and 
higher-order moments diverge [30]. This takes place 
because the corresponding explicit expressions 
contain uncompensated contributions like

q q
a a

q

n n− = ∞∑

The divergence of higher-order moments C2l (k)
with l > 2 is directly related to the slow decay of the 
loss function as |ω| → ∞. If we presume that for

( , ) ( ) /L k A k γω ω→ ∞ ≅

then, due to the divergence of the sixth moment and 
the convergence of the fourth one (44), we conclude 
that 5 < γ ≤ 7.



27

I.M. Tkachenko     

In a completely ionized plasma for ω >>(βℏ )−1

the microscopic acts of the electromagnetic field 
energy absorption become the processes inverse with 
respect to the bremsstrahlung during pair collisions 
of charged particles. As it was shown by L. Ginzburg 
([31]) this circumstance permits to use the detailed 
equilibrium principle to express the imaginary part of 
the longitudinal dielectric function, Imϵ(k,ω), of a 
completely ionized plasma, which is directly related 
to the plasma external dynamic conductivity σext(k,ω)
real part, in terms of the bremsstrahlung cross-
section. A calculation similar to that of Ginzburg, but 
using the well-known expression for the 
bremsstrahlung differential cross-section for high 
values of energy transfer and ω≫ (βℏ )−1 [32], lead to 
the following asymptotic form of Imϵ(k,ω) in a 
completely ionized (for simplicity, hydrogen-like) 
plasma [30]:

( )( )1

0
9/2

Im ,

4
1 ...T

k

A

ε ω β

π ω

ω ω

−
>> ≅

≅ − + 
 
 



, (49)

where

( )

5/2 2 6

0 3/2

2
3 e i

Z e
A n n

m

π
=


, 

3
4Tω β

=


,

ni = Zne. The main term of (49) was obtained by 
Perel’ and Eliashberg [33]. One of our aims is to 
specify (49) taking into account the sum rules (34). 
Notice that even the main term of the plasma 
dielectric function asymptotic behavior (49) is still 
discussed in literature, producing sometimes even 
contradictory results [34].

3.2 Classical one-component plasmas.

The classical one-component plasma (OCP) 
might be considered a test-tube for the modelling of 
strongly interacting Coulomb systems [35], see also 
[36] and [37] for more recent reviews. OCP is often 
employed as a simplified version of real physical 
systems ranging from electrolytes and charged-
stabilized colloids [38], laser-cooled ions in 
cryogenic traps [39] to dense astrophysical matter in 
white dwarfs and neutron stars [40]. Another modern
and highly interesting pattern of the OCP is dusty 
plasmas with the pure Coulomb interparticle 
interaction potential substituted by the Yukawa 
effective potential [41].

The classical OCP is defined as a system of 
charged particles (ions) immersed in a uniform 
background of opposite charge. It is characterized by 
a unique dimensionless coupling parameter Γ =
β(Ze)2/a. Here, like before, β−1 stands for the 
temperature in energy units, Ze designates the ion 
charge, and a = (3/4πn)1/3 is the Wigner-Seitz radius,
n being the number density of charged particles. For 
Γ > 1 the interaction effects determine the physical 
properties of the OCP.

We successfully applied the method of moments 
complemented by some physical considerations in 
[17]. Precisely, the five-moment approximation {C0
(q),0,C2,0,C4 (q)} was applied to reconstruct the 
dynamic structure factor (36) and to study the 
properties of the collective modes in Coulomb and 
Yukawa model systems characterized by the diagonal 
form-factors in (43) equal to, respectively, ζC = 1 and 
ζY = q2/(q2 + κ2), where κ is the screening parameter 
of the Yukawa potential (Z2e2/r)exp(−κr/a). With the 
simplification (33) and the symmetry of the loss 
function taken into account, the expression for the 
DSF can be written as

2 2 2
1 2 1

2 2 2 2 2 2 2 2
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( )
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S q
nS q

h
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π ω

ω ω ω

ω ω ω ω ω

=

−
=

− + −

, (50)

Since the loss function, and in a classical system, 
the DSF are even function of frequency, the r.h.s. of 
the previous expression depends only on the 
frequency squared. It implies that the first derivative 
of the DSF at ω2 = 0 vanishes only if

2
2

0

1

( )
( )

( ) 2

q
h h q a

q

ω

ω
= = ,

(51)

The presence of an extremum of the loss function 
and, in classical systems, of the DSF at ω = 0 follows 
from the canonical solution (23) with the point 
masses located at the points ω = 0, ω = ω1, and ω =
ω2 [42]:
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The validity of this result was confirmed 
numerically in [10] and also in [17] by comparison 
with numerical data on the dynamic characteristics of 
OCP’s. It implies that, at least in classical OCPs, we 
can calculate the DSF and the collective mode 
characteristics entirely in terms of the static structure 
factor (SSF), S (q), it makes it self-consistent. Indeed, 
due to the classical version of the FDT,

2 22
1

2

( )
3 ( )

p

p

qq
S q

ωω

ω
=

Γ
, (52)

and the coupling-related
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where
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∫

, 

is also determined by the SSF and the one-species 
form-factor, since in OCPS’s H = 0. Numerical 
results obtained on the basis of the relations (50, 51, 
52, 53) are presented in the following figures. The 
displayed quantitative agreement with the numerical 
simulation data the viability and robustness of the 
self-consistent moment approach.

3.2.1. The OCP numerical data.

As an example, I reproduce here our results 
published last year in [17]. To stress that here we 
employ no adjustment parameters whatsoever.

Figure 1 – Dynamic structure factor normalized to the shifted maxima values in strongly coupled COCPs, 
compared to the MD results [17], at various values of Γ and k
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Figure 2 – As in Figure 1 but in strongly coupled YOCPs, compared to the MD results [17] 

4 The search for the Nevanlinna parameter 
function 

As we have seen in the previous Section, the self-
consistent moment approach is quantitatively 
suitable for the description of dynamic properties of 
classical OCPs. It is shown in [43] how the method 
can be successfully extended to the partially or 
completely degenerate electron gases. Nevertheless, 
the simplification (33) effectively limits the 
applicability of the method in the low-coupling 
regime where the Landau collisionless damping is 
usually described within the RPA. In other words, we 
wish to choose a model expression for the NPF 
capable of incorporating the low-Γ RPA-like 
behavior into the moment scheme. 

Here, we consider three different model 
expressions for the dynamic renormalized NPF 
Q2(ω;q) both for classical and partially degenerate 

systems. Notice that in the physical context the 
variable t becomes frequency ω and we must take 
into account the spatial dispersion of the dynamic 
characteristics by introducing the (dimensionless) 
wavenumber variable q. 

We start observing that the loss function 
effectively depends only on dimensionless variables 

2

2
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x



 , 

2
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j
j

p

x



 ,  1, 2j  . (54)

This implies that the dimensionless NPF can be 
written as 

2

0 0 0

( ; )

p

Q q x x x
X iY

x x x



 

   
   
   

, (55)
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where x0 is the characteristic value of the new 
variable equal to k2vth

2 = 2q2/3Γ or k2vF
2 = q2vF

2 /a2,
respectively, in the classical and quantum-
mechanical cases, vth and vF being, certainly, the 
thermal and Fermi velocities. Indeed, then the 
frequency-dependent part of the r.h.s. of (31) can be 
written as a function of y = x/x0 and from the 
condition of the loss function extremum at the point 
y = 0 we obtain:

2

1 1 1 2 1 0 1

1

(2 )

x
h

x W W W x W x
=

− −
, (56)

Where we have introduced the following values 
of the functions X, Y and of the derivative Y’ at y = 0:

0 0X hW= ,  0 1Y hW= , 
'

0 2Y hW= .

Observe that if Y0 = h; and X0 = Y0’ = 0 so that 
W1 = 1, W0 = 0, W2 = 0, we return to the “static” 
approximation,

2
0

12

x
h h

x
= = .

4.1. Classical Coulomb OCPs.

Presume first that the NPF is the plasma 
dispersion function [44], i.e., put

2

0 0 0

( ; )

0

2 / (3 )

p

Q q

x x x
X iY

x x x

h i
Z

q

ω

ω

ω
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+

=

= + =

+
=

Γ

   
   
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 
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 

, (57a)

where

2( 0 ) i exp( ) 2 ( )Z i Fζ ξ π ξ ξ+= + = − − ,

02 / (3 )

x
xq

ω
ξ = = ∈

Γ


with

21
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exp exp
x x x xs

F ds
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     
     
     

∫ (58)

being the Dawson integral

2( 0 ) exp( ) 2 ( )Z i i Fξ π ξ ξ++ = − − . (59)

A simple variable substitution leads to the 
alternative representation of (58),

21
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so that
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0
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1
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Then, it stems from (56) that in this case
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0 1 0 11
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π π

π π

+ −
=

+ −

Alternatively, we might introduce an adjustable 
parameter and redefine:

2

0 0 0

( ; )

( 1) 0

2 / (3 )
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(57b)

Somewhat more cumbersome but straightforward 
calculations lead in this case to
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02

1 0 1 0 1
2 (1 )( 4(1 )) 2(1 )

inv
h

xx

x x x x x

π

π α π α α

=

=
− − + − − −

which tends to h0 when α → 1. Notice that the 
parameter α, generally speaking, can be fixed by the 
Shannon-entropy maximization procedure [14].

4.2. Partly degenerate Coulomb OCPs.

There is a number of quantum-mechanical 
generalizations of the plasma dispersion function, see 
[45]. Consider, following D.B. Melrose and A. 
Mushtaq [46], the following generalization of (57a)
(a misprint in the original paper is corrected)
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(60)

(61)

where ξ = (ω + i0+)/(qveff/a) with, perhaps, veff = vF .
As usually, η is the dimensionless chemical potential. 
This function satisfies the following classical limiting 
property:

( ; ) ( )Z Zζ η ζ→ −∞ ≅ ,

By definition, with x defined as in (54),

0

0

ln 1 exp
Im ( ; )

exp( )

exp

x
x

Z x

x
x

η

η

η

η π
η

π

→−∞

→−∞

+ −

= ≅

≅ −

  
  

  

 
 
 

(62)
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one obtains that
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and that
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Now, from (62),

( )( )
0

ln 1 expIm (0; )
exp( )

Z ηη

ηπ

+
ϒ = = , 

'
0

0

1
( 1)x eη

ϒ = −
+

.

So, if one introduces the low-frequency NPF for 
partially degenerate plasmas as
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Q q x
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(63)
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then, 
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In other words, this new NPF equals

( )2 ( ; )
Re ( ; ) Im ( ; )qm

p

hQ q
Z x i Z x

ω
η η

ω π
= + , (64)

where the function Z (x;η) is determined in (60) and 
(61). The formula for the DSF function is, as before,

2 2 2
1 2 1 2

3 2 2

( , ) ( ) Im ( )
( )

( ) ( ) ( ) ( )
S q Q t

B
nS q D t Q t D t

π ω ω ω ω
β ω

−
=

+
 ,

(65)

The numerical data with respect to the above 
frequency-dependent NPFs is presented in the next 
Sect. The completely degenerate case is to be 
considered elsewhere.

4.3. Numerical data on the dynamic NPFs
4.3.1. Classical plasmas.

Figure 3 – Dynamic structure factor fot the COCP presenting the method of moments (MM) data vs. the 

MD data (dots). 1 – MM with 
0

( )

p

Q q
ih

ω
= , 2 – MM with 

( )Q q

ω
from (57b), with 0.5α = , 3 – MM with 

( )Q q

pω
p

from (57a), 4 – RPA theory
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4.3.2. Partly degenerate plasmas.

Figure 4 – Dynamic structure factor for partly degenerate OCPs (electron gas), 
MM data vs. data of [47].

1 – [47], 2 – MM with 
( )

0
Q q

ih
pω

= , 3 – MM with 
( ; )2Q q

p

ω

ω
from (64)

5 Conclusions

A thorough review of the self-consistent method 
of moments is presented. Ways are discussed of 
qualitative improvement of the method consisting in 
the employment of different dynamic models of the 
Nevanlinna parameter function (NPF) analogous to 
the dynamic local-field correction function [12]. The 
latter is used to extend the realm of applicability of 
the random-phase approximation (RPA). Though the 
self-consistent method of moments with a static NPF 
(56) has proven to work very well in warm dense 
matter, our preliminary results demonstrate that the 

suggested model NPFs provide a satisfactory 
agreement with the simulation data in low-density 
Coulomb plasmas. Further steps along this path are 
planned to be taken, especially in the case of partly 
and completely degenerate systems. Finally, we 
stress that no adjustment parameters are used in our 
calculations.
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