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Calculation of tritium release from driver fuels 
 into primary coolant of research reactors
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Increasing of tritium concentration in the primary coolant of the research and test reactors during operation 
had been reported. To check the source for tritium release into the primary coolant during operation of the 
JMTR and the JRR-3M, the tritium release from the driver fuels was calculated by MCNP6 and PHITS. It 
is clear that the calculated values of tritium release from fuels are as about 107 and 106 Bq for the JMTR and 
JRR-3M, respectively, and that calculated values are about 4 order of magnitude smaller than that of the 
measured values. The JMTR is a tank type, and the JRR-3M is a pool type research reactor. The primary 
coolants are light water, in which the coolant temperature is lower than 50ºC. These results show that the 
tritium release from fuels is negligible for both the reactors. In the calculations of tritium release rates into 
the water by PHITS, a gaussian triton energy by ternary fissions of 235U.
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1 Introduction

Tritium release into the primary coolant during 
operation of the JMTR (Japan Materials Testing Re-
actor) and the JRR-3M (Japan Research Reactor-3M) 
had been measured. As results, the amount of tritium 
release per operation cycle was reported as 1~2×1011 
Bq and 1~4×1010 for the JMTR and JRR-3M, respec-
tively [1-5]. The sources and mechanism of the triti--5]. The sources and mechanism of the triti-]. The sources and mechanism of the triti-
um release had been studied [6-10], and it is clear that 
the beryllium components in core strongly affect the 
tritium release into the primary coolant. However, to 
get a scientific evidence, the other effects such as a 
ternary fission by the driver fuels should be checked 
[11-15]. Therefore, the calculation of tritium release 
from the driver fuels was carried out in this paper.

2 Calculations of tritium release from driver 
fuels

Outline of the JMTR and the JRR-3M are 
summarized in Table 1. The JMTR is a tank type, 

and the JRR-3M is a pool type research reactor. The 
primary coolants are light water, in which the coolant 
temperature is lower than 50ºC. Core configurations 
for both the reactors are shown in Figures 1 and 2 [1]. 
In this calculation, it was assumed that all fuels were 
the same as standard fuel. Size of standard fuel plates 
for both the reactors are shown in Table 2 [16, 17].

Table 1 – Outline of JMTR, JRR-3M

Items JMTR JRR-3M

Thermal power 
(MW) 50 20

Main purposes
Irradiation tests, 
RI productions, 

Training

Beam 
experiments,

RI productions

Main core 
components Be, Al Be, D2O tank

Operation 30d/cy, 6cy/y 25d/cy, 6cy/y
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Table 2 – Size of standard fuel plate

Items JMTR JRR-3M
Fuel meat thickness (mm) 0.51 0.51
Fuel meat width (mm) 62 62
Fuel meat length (mm) 760 750
Thickness of cladding (mm) 0.38 0.38
Fuel plate thickness (mm) 1.27 1.27
Fuel plate width (mm) 71 71
Fuel plate length (mm) 780 770

Figure 1 – Core of JMTR Figure 2 – Core of JRR-3M

The difference in size of standard fuel plates 
between both the reactors is only the length. The 
cross-section of both fuel plates are the same 
size. Calculation model of the standard fuel 
plate is shown in Figure 3. Tritium productions 
by the ternary fissions and tritium release rates 
into the water for one operating cycle in both 
the reactors were calculated by MCNP6 [18] 
and PHITS [19], respectively. The calculation 
results of tritium production by MCNP are 
shown in Table 3.

Figure 3 – Calculation model of standard fuel plate
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(1) Standard fuel plate of JMTR (2) Standard fuel plate of JRR-3M

Figure 4 – Triton 2D distribution

(1) Standard fuel plate of JMTR (2) Standard fuel plate of JRR-3M

Figure 5 – Triton 1D distribution

Table 3 – Calculation results

Items JMTR JRR-3M

Tritium production (Bq) 2.7×109 2.4×108

Tritium release rate 2.8×10-3 2.8×10-3

Released tritium (Bq) 7.6×106 6.5×105

Calculated value / measured value ~10-4 ~10-4

In the calculations of tritium release rates into the 
water by PHITS, a gaussian triton energy by ternary 

fissions of 235U, as shown in Figure 3, was selected 
[20]. The calculation results for standard fuel plates 
by PHITS are shown in Figure 4, Figure 5, and Table 
3. Tritium release from fuels is about 107 and 106 Bq
for the JMTR and JRR-3M, respectively.

3 Discussion

From the above calculation results, the tritium 
release from fuels for both the reactors is about 4 order 
of magnitude smaller than that of the measured value 
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(JMTR: ~1011 Bq, JRR-3M: ~1010 Bq). Therefore, it 
is clear that the tritium release from fuels for both the 
reactors is negligible, and that it is not necessary to 
consider as the source of tritium release.

4 Conclusions 

To check the source for tritium release into the 
primary coolant during operation of the JMTR and 
the JRR-3M, the tritium release from the driver fuels 

are calculated by MCNP6 and PHITS. The following 
results were obtained.

- The calculated amount of tritium release from 
fuels are about 107 and 106 Bq for the JMTR and 
JRR-3M, respectively.

- The calculated values are about 4 order of 
magnitude smaller than that of the measured value.

- The tritium release from fuels for both the 
reactors is negligible. It is not necessary to consider 
the fuels as the source of tritium release.
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