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We study a process of the photodisintegration of some Borromean light nuclei into three clusters. This 
study is performed within a three-cluster microscopic model. In Reference [1] this model was applied to 
obtain parameters of resonance states in 9Be and 9B and to establish their nature. Main aim of the present 
investigations is to describe the dipole transition probability from the ground state of 9Be to the states of 
three-cluster α+α+n continuum by using the same model. That model exploits the hyperspherical 
harmonics basis (HHB) and thus reduces many-channel Schrödinger equation to the algebraic matrix 
(AM) form. The dipole transitions from the ground 3/2- state to the 1/2+ states of three-cluster continuum 
were studied in detail. The role of resonance states in three-cluster continuum to this process is 
investigated in detail. The dominant channels with the maximal dipole strength due to the coupling 
between the ground and scattering states are discovered. 
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1 Introduction 

We consider the photodisintegration of some 
light nuclei into three fragments. This process is 
considered for nuclei with distinguished three-
cluster features, or, in other words, nuclei which 
have the lowest three-cluster decay threshold. Such 
nuclei are also called the Borromean nuclei. In the 
present paper we will concentrate on the nucleus 
9Be, which considered as a three-cluster 
configuration α+α+n. These investigations are also 
aimed at clarifying the existence and properties of 
the 1/2+ resonance state in 9Be. 

All investigations are carried out within a 
microscopic three-cluster model. For this model we 
will use an abbreviation AMHHB which indicates 
that the model exploits the hyperspherical 
harmonics basis (HHB) and thus reduces many-
channel Schrödinger equation to the algebraic 
matrix (AM) form. The key elements of the 
AMHHB were formulated in Reference [2] and then 
applied to study the three-cluster continuum in light 
nuclei. 

In a set of publications [3, 4, 5, 6, 7, 8] the 
photodisintegration of9Be into two alpha-particles 
and a neutron has been considered within the 
orthogonality condition model (OCM) which make 
uses the Gaussian basis and the complex scaling 
method (CSM) to locate resonance states. In these 
papers the 1/2+ excited state was shown to be a 
virtual state situated a very close to the two-cluster 
8Be+n threshold. It was also shown that a huge peak 
of the photodisintegration cross section is created by 
the virtual state in the two-body channel 8Be (0+)+n. 

The three-cluster photodisintegration also 
attracts numerous experimental studies. The recent 
experimental measurements of the photodisinteg-
ration cross section are presented in References [9, 
10, 11]. 

2 AMHHB and coupled channels 
methodology 

In this section we present the main ideas of the 
AMHHB method. Basic ideas of the method were 
formulated in Reference [2]. In the present paper we 
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will the same notations as in recent publications [1, 
12, 13]. 

Any microscopic model is based on a 
microscopic Hamiltonian, which includes a nucleon-
nucleon interaction and the Coulomb forces, and on 
form of a fully-antisymmetrized wave function. 

Within a three-cluster model, a wave function of 
compound system with a partition A = A1 + A2 + A3 
is 
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All notations are the same as in Reference [1]. 
We also refer to Reference [1] for explanation of 
details of all parts of the wave function (1), quantum 
numbers and the Jacobi vectors x and y. 

By using hyperspherical coordinates 
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the wave function (1) is represented as 
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where K is the hypermomentum,  
1 2, , ;K l l LY   is a 

hyperspherical harmonic. A set of quantum numbers 

 1 2, , , ,c K l l L       (4) 

numerates channels of the three-cluster continuum.  
The hyperspherical harmonics allow us to 

employ the rigorous methodology coupled channels. 
In this case the many-particle Schrödinger equation 

transforms in a set of coupled equations for a 
column vector of hyperradial functions: 
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Components  
ic  of the wave function (5) 

are subject for boundary conditions, which were 
discussed in detail in Reference [12]. The total 
many-particle Hamiltonian Ĥ is split onto the 
channel Hamiltonians Ĥсс and ˆ

ccH   ( c c ) for
coupling between channels. Both channel 
Hamiltonians and coupling Hamiltonians contain 
local and non-local componentsdue to the 
antisymmetrization. In the channel Hamiltonians, 
the local part consists of the kinetic energy operator 
and the folding (or direct) potentials. On other hand, 
the coupling Hamiltonians contains the local part 
consisting of the folding (or direct) potentials only. 
It means that there are contributions from the 
interaction only, but not from the kinetic energy 
term. 

Hamiltonians ˆ
ccH  and ˆ

ccH   ( c c ) are
obtained by sandwiching of the total Hamiltonian 
between the corresponding hyperspherical 
harmonics cY  and cY  

   1 2 3 1 2 3
ˆ ˆˆ

c cA Y H A Y     

and integrating over all hyperangels and over those 
Jacobi coordinates describing the internal structure 
of interacting clusters. If we assume that the 
antisymmetrization operator Â  = 1, we obtain the 
local form of the Hamiltonians ˆ

ccH  .
It is important to underline, that within the 

coupled channel methodology, if we have Nch open 
channels then for each energy we have Nch 
independent solutions (wave functions) which 
describe all possible elastic and inelastic processes. 
It is well known (see for instance, chapter 6 of book 
[14] and Reference [15]) that the first wave function 
is obtained by assuming that there is an incoming 
wave in the first channel and outgoing waves appear 
in all channels, the second wave function contains 
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the incoming wave in the second channel, and so on. 
Thus these functions can be marked by the channel c 
which possesses both incoming and outgoing waves. 
Thus, considering a photo- or electro-disintegration 
of Borromean nuclei we automatically obtain Nch 
cross sections of the process. 

Suppose we obtained wave function of a bound 
state

i iE J and wave function 
f fE J of continuous 

spectrum state with energy Ef measured from the 
three-cluster threshold. Then we can calculate 
probability of the dipole λ=1 transition from bound 
to continuous states 
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vector ir ( ˆi i irr r ) is a coordinate of the ith nucleon. 
It is important to note that wave functions 

i iE J

and 
f fE J  of bound and scattering states, 

respectively, are normalized by the following 
conditions 
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In this section we defined all necessary 
quantities to perform the theoretical analysis of the 
dipole transitions from the bound state of the 
Borromean nucleus 9Be to its continuous spectrum 
states. 

3 Three-cluster photodisintegration 9Be 

In this nucleus, the 1/2+ resonance state is a 
mysterious state which is seen in one set of 
experiments, but does not observed in other set of 
experiments. Such a situation is also observed with 
different theoretical models. It was shown in 
References [1] and [16] that the AMHHB model 
confirms the existence of the 1/2+ resonance state. 
These results were obtained with the modified 
Hasegawa-Nagata potential [17, 18] in Reference 
[1] and the Minnesota potential [19, 20] in 
Reference [16]. Energies of resonance states in 9Be 
are determined from the three-cluster α+α+n 
threshold. 

In Table 1 we show the input parameters of 
calculations for 9Be and the energy of the ground 
state, and energies and widths of the 1/2+ resonance 
states. These results are obtained in Reference [1] 
with the MHNP and in Reference [16] with the MP. 
Both potential creates at least two resonance states, 
one of which is close to the three-cluster threshold 
(E=0.248 MeV and E=0.338 MeV) and other lies at 
energy E=1.664 MeV and E=1.432 MeV. Energies 
of resonance states obtained with two different 
nucleon-nucleon potential are close, however their 
widths are quite different. 

In Table 2 we display two-body threshold 
energies of 8Be(0+)+n and 5He(3/2-)+α, as they play 
an important role in the photodisintegration of 9Be. 
These energies are measured from the three-cluster 
threshold and they include energies of the 0+ 
resonance state in 8Be and the 3/2- resonance state in 
5He, respectively. 

Table 1 – Energy of the 9Be ground state and parameters of the 1/2+ resonance states 

Input parameters Jπ=3/2- Jπ=1/2+

Potential b (fm) u/m E (MeV) E (MeV) Γ (keV) E(MeV) Γ (MeV)
MP 1.285 0.9280 -1.555 0.248 15 1.664 1.520

MHNP 1.317 0.4389 -1.574 0.338 168 1.432 0.233
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Table 2 – Parameters of resonance states in two-cluster subsystem of 9Be 

Channel 8Be(0+)+n 5He(3/2-)+α 
Potential E (MeV) Γ (keV) E (MeV) Γ (MeV)

MP 0.172 0.748 1.059 1.116
MHNP 0.859 958.40 0.385 0.209

Let us turn our attention to the dipole transitions. 
In Figure 1 we display the dipole transition 
probability from the 3/2- ground state to the 1/2+ 
continuous spectrum states of9Be. The bar plots 
indicate energy (the centre of the bar) and with of 
the 1/2+ resonance states. In Figure 1 we show the 
dipole transition probability for three wave 

functions of continuous spectrum state. These 
functions are distinguished by the entrance channel 
K = 0, K = 2 and K = 4. As one can see, the first 
wave function is dominant-channel in the present 
region of energy. Besides the first 1/2+ resonance 
state is created in this channel, the dipole transition 
probability is very small. 

Figure 1 – Distribution of the dipole transition probability over continuous spectrum states of 9Be. 
The bars present the energy (in MeV) and width (in keV) of the 1/2+ resonance states. 

It is interesting to note that shape of the function 
B(E1; 3/2- E0=>1/2+E) is similar to the weight 
of the internal part of the scattering 1/2+ wave 
function.  

The latter is displayed in Figure 2 for three 
dominant wave functions of the 1/2+ state generated 
by the entrance channels with K = 0, K = 2, and K = 
4, respectively. 
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Figure 2 – Weights WK(E) of the internal part of the many-channel wave function describing 
three-cluster scattering in the state Jπ = 1/2+. 

Contribution of the first 1/2+ resonance state to 
the dipole transition is shown in Figure 3. 
One can see that the contribution of the first 
1/2+ resonance state is not as prominent  

as for the second 1/2+ resonance state. This 
is a result of a kinematical factor that suppresses 
the dipole transition at the low-energy 
region. 

Figure 3 – The distribution of the dipole transition in 9Be  
around the first 1/2+ resonance state. 
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4 Conclusions 

We have considered the photodisintegration of 
the nucleus 9Be. The consideration has been 
performed within a microscopic three-cluster model 
α+α+n. The model employs the full set of six-
dimension oscillator functions to describe relative 
motion of clusters. Oscillator functions are nume-
rated the quantum numbers of the hyperspherical 
harmonics method. The hyperspherical harmonics 
are very suitable for implementing the boundary 
conditions for wave functions of three-cluster 
continuous states. The dipole transitions from the 
ground 3/2- state to the 1/2+ states of three-cluster 
continuum were studied in detail. We demonstrated 
that the low-lying 1/2+ resonance state weakly 
contributes to the dipole transition probability, while 

the second 1/2+ resonance state has strong impact on 
the dipole transition probability. 
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