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Many problems of numerically solving the Schrodinger equation require that we choose asymptotic 
distances many times greater than the characteristic size of the region of interaction. The problems of 
resonance diffraction for composite particles or the problem of nucleon scattering by nonspherical atomic 
nuclei are examples of the need to use a large spatial domain for calculations. If the solution to one-
dimensional equations can be immediately chosen in a form that preserves unitarity, the invariance of 
probability (in the form of, e.g., fulfilling an optical theorem) is a real problem for two-dimensional 
equations. An addition that does not exceed the discretization error and ensures a high degree of unitarity 
is proposed as a result of studying the properties of a discrete two-dimensional equation.  
The problem for scattering of rigid molecules by the disks was successfully solved using an improved 
sampling scheme that provides the correct asymptotic behavior. Corresponding diffraction scattering 
curves are of a pronounced resonance nature.  
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1 Introduction 

In numerically solving problems whose 
mathematical notation is expressed in terms of the 
two-dimensional Schrodinger equation, there is the 
problem of a loss of accuracy for finite difference 
schemes. It is associated with the need to travel long 
distances relative to the characteristic size of the 
potential range. Such situations arise in the 
scattering of slow particles at long scattering 
distances or with the scattering of fast particles with 
pronounced diffraction when we need to go beyond 
the region of the diffraction shadow in the 
calculations. 

The problems of resonance diffraction for 
composite particles [1, 2] or the problem of nucleon 
scattering by nonspherical atomic nuclei are 
examples of the need to use a large spatial domain 
for calculations. Expansion in spherical functions in 
this case loses both physical and mathematical 
meaning because of the non conservation of the 

angular momentum in the scattering process. The 
standard approach, which uses amplitude notation in 
an explicitly unitary form, thus becomes an 
inoperative tool. We can, of course, choose a 
solving scheme based on some averaging of the 
nonspherical potential (by, e.g., means of folding 
[3]) and leaving the error of the means of solving 
without any possibility of analysis. This problem 
arises not only in the two examples given above, 
and it is solved in different ways for specific cases 
in theoretical physics, nanostructure physics, and 
related fields of chemistry, medicine, and atomic 
interferometry [4-8]. 

2 Material and methods 

Let us write the Schrodinger equation in a two-
dimensional axially symmetric case for a scattering 
problem (here and below, we use a system of units 
in which the Planck constant and the Boltzmann 
constant are 1 in analogy with [4]) 



26

Asymptotic behavior of numerical solutions ...

2

2

2 2

( ) ( ) ( ) ( ),

2 1 1 sin( )
sin( )

r V r r k r

r rr r


  

     

      
  

   

       (1) 

Here, mEk 22   is a wave parameter,� is the 
energy of the system, and ),()(  rr is the
wave function. Note that the energy in the selected 
system of units ismeasured in ones that are inverse 
to the square of thelength. The potential is limited in 
some area 0V with Vrr  . The asymptotic form 
of the wave functionin a region greater than some 
asymptotic radius asr : ,as Vr r r   
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determines scattering amplitude  f , which obeys
optical theorem [9] 

   2

0

42 sin( ) Im 0 ,f d f
k

 
      

where σ is the total cross section. This ratio (the 
conditionfor invariance of probability) can be used 
as acriterion of accuracy for the numerical solution 
to theproblem.We must choose a sufficiently high 
value of parameter ���that determines the region of 
the asymptoticsolution in the numerical solution to 
the scatteringproblem. Asymptotic distances several 
hundred unitsof the problem’s length for 
characteristic values �� = 1 − 3and � � 3�must 
extend beyond shadow region )( VVas krrr  in the 
problem of the quantum scattering of particles on a 
nonspherical potential [1]. 

The limiting accuracy of calculations for such 
distancesis determined by the ignored asymptotic 
term (i.e., it can be a fraction of a percent). The form 
of potential )(rV  requires the use of asmall
parameter for the sampling step. This ensuresthe 
accuracy of the solution, but considerably 
extendsthe estimated time. Two sampling steps are 
used toadvance the calculations for continuing 
quantum scatteringstudies on nonspherical 
potentials [1,2]. For Vs rrr  , we choose fairly 
small step 001.0r , which guarantees sufficient 

accuracy   2rO  in the range of potentials, and
step rr n 22 with 54~ n for srr  . 
However, this choice results in as much as10% 
deviation in fulfilling the optical theorem. 
Thesedeviations are much larger than the sampling 
error   2

2rO  for finding the wave function. Such 
anerror in the phase of asymptotic wave function 
neverthelessresults in considerable deviation from 
theoptical theorem. 

The importance of loss of accuracy can 
beexpressed in a one-dimensional example. Let us 
considera one-dimensional free equation for 

 r  and its finite difference approximation 
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Replacing the value of the function at points 
)( rr  with a Taylor expansion, we obtain 
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The solutions to this equation have the form 
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Expanding the exponent in a series with respect 
to��, we obtain 

  )(
24
1 42 rOrkikrikr  .   (2) 

Since this expression is in the exponent, the 
secondterm can be ignored only if it is small in 

comparison to unity  21 1
24

kr rk   
 

. This 

inequality is certainlynot satisfied for very large �. 

For example, phase term   rrkkr 05543.0
24
1 2 

at ,300,016.0  kr and becomes equal to 
5.5 when 100r . The problem ofthe loss of 
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accuracy is thus due to the incongruity ofthe exact 
asymptotic form and the asymptotic behaviorwhen 
solving the equation in finite differences.The same 
result can be obtained in general form.Let us find 
the solution to finite difference equation 
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by substituting function )exp( rikeff in it. 

Thisleads to the equation for effk : 

 222

2
sin4 rk

rkeff 






 
. 

The finite difference equation thus has an 
exponentialsolution with wave parameter effk : 
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Expanding effk in a series with respect to ��, 
we obtain 
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As expected, the first terms of the series 
coincidewith Eq. (2).In a similar manner, we can 
obtain the value of effk for more complicated 
problems, e.g., for two-dimensionalSchrodinger 
equation (1), sampled usingNumerov’s method to an 
accuracy of   4rO  . Wemust in this case solve
the following finite difference equation 
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It yields 
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without quadratic terms with respect to �� as a 
series expansion 
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The deviation of the correct asymptotic behavior 
fromthe solution to Eq. (4) thus occurs at much 
greater distanceswhen using Numerov’s scheme. 

For example, the value  4Δ
480
1 rkkras at  ��� =

100 is 0.02, determiningan error of 2% in the 
unitarity condition whenusing the problem 
parameters 0.016, 300.r k   Such a scheme 
can be used for a two-dimensionalequation with 
twice differentiable interaction potentials. 

Unfortunately, it does not work when using 
potentials with sharp boundaries. We propose 

introducing small term 
 

12

2
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 into Eq. (3). On 

the one hand, this term has a low degree 
ofdiscretization error in the range of potentials; on 
theother, it is the compensating term for the free 
equationand brings its discretization error down to 
 4Δ rO :
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whose series expansion 

    645 ΔΔ
720
1 rO rkkkeff  , 

has a numerical factor in front of  4Δ r that is even
less than in expansion (5), ensuring 99–97% 
unitarity withthe most stringent parameters of the 
problem.  
The computational error does not exceed 0.5% in 
testreductions of the sampling step (down to 

008.0r ). 

3 Results and discussions  

The problem of the scattering of a rigid 
diatomicmolecule on a thin disk was solved by 
using the correctasymptotic behavior. The barrier 
potential of a disk in cylindrical coordinates 

 cosr and  sinrz is written in the form 
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Parameters �� �determine the disk size. In 
analogy with the problem of a rigid moleculepassing 
through a barrier [4], the potential in Eq. (1) for the 
model of a rigid molecule has the form 

   2/,2/, dzVdzV bb   , 

where parameter �corresponds to the size of a 
scatteredrigid molecule.The difference between the 
scattering of a moleculeand a point particle equal to 
its mass is best seen inbackscattering, so not only 
the scattering cross sectionsof the molecule but also 
the backscattering cross section for a particle with a 
mass equal to that of twoatoms are shown in the 
figures below. This cross sectionmust have the form 
of monotonic energy and rapidlyshrink at energies 
above that of potential barrier(the disk potential). 
Barrier height ���in the abovecalculations was 
assumed to be 333.2Å��(������ fora hydrogen 
molecule). The figures show the total crosssections 
along with those into the front and rear 
hemispheres.The cross section into the front (rear) 
hemisphereis determined in the same way as the 
total crosssection, but the limits of integration over 
the angle arefrom 0 to π/2 (from π/2 to π). 

Figure 1 – The scattering cross sections of the hydrogen molecule 
 on the disk at R = 3 Å. 1 – σt, 2 – σf, 3 – σb, 4 – backward scattering cross section  

for a particle with a doubled hydrogen atom mass 

σ, Å2 

E, Å-2 
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Figure 1 shows the results from calculating 
thedependence of the total scattering cross section of 
rigidhydrogen molecule H2 by a thin disk with a 
radius of  3 Å and a width of 0.2 Å on the energy. 
Parameter �is0.7416 Å for hydrogen [10]. It can be 
seen that the backscatteringcross section of the 
molecule generallyrepeats the pattern of the 
scattering cross section for anunstructured particle, 
but it has characteristic resonance deviations. 

The diffraction scattering cross sections of 
rigidberyllium molecule Be2are given for comparison 
in Figure 2. Parameter d is 2.47 Å [11, 12]. The 

greater numberof quasi-bound states are due to the 
greater distancebetween atoms that is observed on the 
cross section by a large number of resonances. The 
main dips inthe cross section (resonances) coincide 
with the positionsof the energy levels in a rectangular 
one-dimensionalwell with a width of �, just as in the 
pattern forthe resonant passage of a rigid molecule 
[4]. This leadsto the differences between the 
scattering of hydrogenand beryllium molecules 
observed in the figures. Thenumber of minima in the 
total scattering cross sectionof a rigid beryllium 
molecule is much higher. 

Figure 2 – The scattering cross sections of the Beryllium molecule  
on the disk at R = 3 Å. Numerical line are liked one in Figure 1. 

The calculation of two-dimension scattering at 
non-symmetrical center can be used for problem 
of scattering at holes in infinity wall. The 

Babinet's principle [13] has been used for it. 
The numerical example is presented by 
Figure 3. 

σ, Å
2
 

E, Å
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Figure 3 – Comparison of beryllium atom scattering at an energy  
of 100 Å-2. R3 is the scattering on a disk of 3 Å, R1 is scattering on  

a disk of 1 Å, Ring is scattering on a ring 3 Å wide with a hole of 1 Å. 

It can be seem, that calculated scattering on the 
disk with big radius is equivalent a sum of scattering 
on ring with external radius which equal big disk’s 
one and little disk with radius which equal hole’s 
one. 

The calculation of scattering on hole is 
presented at Figure 4.  

It can seem that the resonance structure is exist 
here too.   
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Figure 4 – Diffraction of beryllium on hole R=2 Å.  
Numerical line are liked one in Figure 1 

4 Conclusions  

The problem for scattering of rigid molecules 
bythe disks was successfully solved using an 
improvedsampling scheme that provides the correct 
asymptotic behavior. The result could be useful for 
analogical topics of investigation [14-22]. 
Corresponding diffraction scattering curves are of a 
pronounced resonance nature. The units of the 

problem length Е were determinedby the interaction 
parameters. A femtometer (fm) isconveniently 
chosen as units of length in problems ofnuclear 
physics. The proposed way of correcting for 
thewave parameter in asymptotic behavior can thus 
beapplied in different areas that study diffraction 
using two-dimensional differential equations (e.g., 
in studyingparticle scattering by nonspherical 
atomic nuclei). 
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