
57

Physical Sciences and Technology Vol. 6 (No. 1-2), 2019: 57-67

IRSTI 29.27.07

On distribution function of free and bound electrons
in equilibrium Coulomb system

S.А. Maiorov1,2,* and А.L. Khomkin1,2

1Prokhorov General Physical Institute of the Russian Academy of Sciences,
38, Vavilov Str., 119991, Moscow, Russia.

2Institute for High Temperatures, Russian Academy of Sciences,
13, Izhorskaya Str. Bd.2, 125412, Moscow, Russia,

е-mail: mayorov_sa@mail.ru

In classical thermodynamics, the velocity distribution function of particles is always Maxwell distribution
for any density. This is due to the fact that the dependences on the pulses and coordinates in the 
expression for the total energy are separated. Integration over coordinates leads to the appearance of a 
configuration integral, and the remaining part is divided into the product of Maxwell distribution 
functions. In the case of formation of bound states (molecules) in an atomic gas, the full phase space of 
the relative motion of two particles is divided into two parts. The first corresponds to negative energies of
relative motion (molecular component), and the second to positive (free atoms). The velocity distribution 
function remains Maxwellian, if we ignore the fact of separation of the phase space. It can be assumed 
that for free atoms the velocity (kinetic energies) distribution may be different from Maxwell. For 
plasmas, the assumption of the non-Maxwellian velocity distribution function of free electrons was made. 
The influence of the non-Maxwell electron distribution function on the recombination coefficient is 
estimated.
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Introduction

The velocity distribution function of particles is 
always Maxwellian for any density in classical 
thermodynamics [1]. This is because the 
dependences on the pulses and coordinates in the 
expression for the total energy are separated. 
Integration over coordinates leads to the appearance 
of a configuration integral, and the remaining part is 
divided into the product of Maxwell distribution 
functions. Hill [2] drew attention to the fact that in 
the case of formation of bound states (molecules) in 
an atomic gas, the full phase space of the relative 
motion of two particles is divided into two parts. 
The first corresponds to negative energies of relative 
motion (molecular component), and the second to 
positive (free atoms). The velocity distribution 
function remains Maxwellian, if we ignore the fact 
of separation of the phase space. It can be assumed 
that for free atoms the velocity (kinetic energies) 
distribution may be different from Maxwell. For 

atomic plasmas, the assumption of the non-
Maxwellian velocity distribution function of free 
electrons was first made in [3].

Following [3], we illustrate the above with the 
example of an atomic plasma, where the formation 
of bound states (atoms) occurs and there are free 
particles (electrons and ions). Considering the ions 
as massive particles, we write the Boltzmann 
distribution function for momenta  p and
coordinates r , considering the interaction potential 
to be Coulomb:
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where  is the Planck constant, β is the inverse
temperature, m is the mass, e is electron charge.
Let us determine the phase space Ω for free
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electrons in a Wigner-Seitz cell of radius a in order
not to burden yourself considering the effect of 
Debye screening.
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We introduce dimensionless values and 

variables: reympxae 222 ,2, βββγ === .
Integrating over the coordinates in (1), for the 

distribution function of the kinetic energy we 
obtain:
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In (3) )(γA normalization constant determined
from the condition
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Maxwell distribution in our variables is 
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Figure 1 shows the distribution functions 

calculated by the formulas (3) and (6) for 1=γ .
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Figure 1 – The distribution function of edekronov on speeds:
the solid line – Maxwell (6); dashed – nonmaxwell (3).
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It can be seen that the non-Maxwell effect 
manifests itself quite noticeably, especially at high 
kinetic energies. When confirming this effect, we 
can expect a noticeable modification of various 
kinetic coefficients, in the calculation of which it is 
necessary to perform velocity averaging.

The papers [4-20] is devoted to the study of the 
non-Maxwell configuration effect, in which the 
molecular dynamics method considered the 
relaxation of the Coulomb system, which allows the 
formation of bound states, to equilibrium. A similar, 
but pure quantum effect was considered in (see [5]
and references therein), where the non-Maxwell 
effect was discovered by quantum statistics methods 
due to quantum broadening. The influence of the
deviation from the Maxwell distribution on the 
speed of various kinetic processes was also 
considered. In this paper, a direct measurement of 
the distribution function of free electrons by kinetic 
energies was performed using the numerical 
simulation method [6] of a model Coulomb system, 
provided that about half of the electrons are in 
bound states. The non-Maxwell effect is shown 
explicitly.

In the present work based on the application of 
the molecular dynamics method:

the relaxation of the distribution function of 
free electrons in the course of transition to an 
equilibrium state is investigated;

b) equilibrium configurations of particles are
calculated and the correlation function of the 
model Coulomb system is determined; 

using statistical averaging, its thermodynamic 
functions are calculated. 

for the first time at the microscopic level, the 
dynamics of the formation of bound complexes 
consisting of a different number of initial particles 
can be traced, which makes it possible to model 
clustering processes in the system.

Calculation of parameters of the charge-
symmetric model system 

Consider a model Coulomb system consisting of 
particles of the same mass. Choose the model 
potential of interaction between particles in the 
form:
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Its asymptotic behavior for opposite charges at 
small distances r has the character of repulsion, and 
with r→∞ it is attractive and coincides with the 
Coulomb potential 1/r. For intermediate values of r, 
the potential has a well and allows the formation of 
classical bound states. The choice of the model 
potential in the form of (7) is due to the need to 
eliminate the Coulomb potential feature at r→0, 
which makes it impossible to integrate the equations 
of motion of particles. At such a potential, bound 
states are formed in the system. The thickness of the 
soft wall σ can always be chosen equal to the 
diameter of the ion core. In the present work, the 
choice of potential parameters: σ and ε=e2/σ – the 
depth of the potential well was carried out in such a 
way as to realize the required values of the 
nonideality parameter Γ and the degree of ionization
α (σ = 2 Å). The latter was estimated by the 
classical Saha formula with the potential 12-1 (7).

The temporal evolution of the system was 
modeled using the multi-particle dynamics method 
(DMP) [4, 6, 16-20]. The trajectories of N positive 
and N negatively charged ions were determined by 
numerical solution of Newton's 
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where rk is the radius vector of the particle number 
k; mk is it’s mass (the mass of protons was taken); e
is electron charge.

At the initial time t=0 the coordinates and 
velocities of the particles were set using a random 
number generator. The coordinates are in 
accordance with the uniform distribution, and the 
speed in accordance with the Maxwell distribution 
for the initial temperature T0. Maxwell distribution 
was defined as follows: 
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The particles were in a cube with thermostatic 
walls. The length of the cube edge was chosen such 
as to ensure the desired density of particles. 
Particles reaching the walls returned to the cube 
with an equilibrium distribution of kinetic energy 
corresponding to the wall temperature Tst.

In the calculations, the algorithm [4] was used to 
reduce computer time. Let at the time t0 be known 
all coordinates rk(t0) and velocities vk(t0) of 
particles. The procedure for determining the 
quantities rk(t0+∆t) and vk(t0+∆t), where ∆t – a step 
in time, is as follows.

а). The coordinate values r0k(t0+∆t/2), 
corresponding to the rectilinear motion of the 
particles, are calculated.

b). The values of the forces acting on the 
particles are calculated: 

2
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c). Each particle is determined by the two 
nearest neighbors of the particles of each sign and 
the distance to them.

d). The force acting on a particle is calculated as 
the sum of two forces

τ
k

c
kk FFF += ,

where τ
kF due to the interaction with the nearest 

neighbors of a given particle, c
kF – interaction with 

all other particles.
e). Newton's equations are integrated according 

to the fourth-order Runge-Kut scheme with a step

τ =Δt/Nτ,

where Nτ is the number of internal steps.
In the course of integration, only interaction 

with the nearest particles is considered temporary.
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After determining the values rk(t0+Δt) and
vk(t0+Δt) the condition of the particles leaving the 
cube boundary is checked. Particles that go beyond 
the cube bound are returned back to the cube with 
an equilibrium distribution of kinetic energy 
corresponding to the wall temperature Tst.

The following values were used in the 
calculations: 

Δt = 0.05 τei, Nτ = 10 ,

where τei is the mean time interparticle distance.

The simulation results and discussion 

At the first stage, the relaxation of a system of 
charges of equal mass to an equilibrium state was 
studied, which was fixed by the temperature and 
ionization degree to equilibrium values. 

Figure 2 shows the dependence of the number of 
bound states on time. A system of 400 negative and 
the same number of positive ions is considered. 
External parameters: density nk=1020 сm-3 and 
temperature T=1200 К. The degree of ionization, 
calculated according to the classical Saha formula, 
was about 0.5. The exit of the system to ionization 
equilibrium is clearly visible.   The wave-like nature 
of relaxation can be associated with the reflection of 
a diffusion flow of bound particles from the bottom 
of a potential well. Such a relaxation pattern is 
observed in all the considered modes. The relaxation 
time increases with decreasing of density. For 
nk=1019 сm-3 time to equilibrium is about 2500τei. 
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Figure 2 – The dependence of the number of bound states on time 
(ne=1020 сm-3 and T=1200 К) 

Figure 3 shows the particle temperature 
relaxation (two thirds of the average kinetic energy) 
for the same mode as in Figure 1. The previous 
stage can be considered as preparation for the 
process of measuring equilibrium characteristics. In 
the equilibrium region, the particle distribution 

function was measured by kinetic energy and 
distances to the nearest ion. Averaging was 
performed over several dozens of equilibrium 
configurations. Measurements were carried out both 
for free particles and for particles bound into 
atoms.
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Figure 3 – Particle temperature relaxation (ne=1020 сm-3 and temperature T=1200 К).

Figures 4 a), b), c) show the measured 
distribution functions of free negatively 
charged ions by kinetic energies (ε – is the 

dimensionless kinetic energy related to 
temperature) for the three regimes in density and 
temperature.
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Figure 4 – The distribution function of free negatively charged ions by kinetic energy: 
a). ne=1019 сm-3 and T=8000 К, b). ne=1020 сm-3 and T=12000 К, c). ne=1021 сm-3 and T=18000 К.
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Solid smooth lines correspond to the function of 
the form:

( ).exp2)( 2
3

αεαε
π

ε −=f   (13)

with the values of the parameter α, indicated in the 
figures. The deviation of the equilibrium 
distribution function of free particles from the 
Maxwell distribution is quite clearly seen. With 
increasing nonideality, these deviations increase. At 
low energies, there is a shortage, and at high 
energies, an excess of free ions. Qualitatively, this 
behavior corresponds to the results of [3]. It is 
noticed that in the system with the formation of 
bound states there appear molecules consisting of 
more than two particles. The following connectivity 

criterion was chosen: a pair of particles is connected 
if the total energy of their relative motion is less 
than the interaction energy at an average distance. 
All bonds in the system were considered and the 
molecular composition was analyzed. After that, 
averaging was performed over several dozens of 
equilibrium configurations.

Figure 5 shows how many molecules of each 
type are represented in the system; Nат is the 
number of particles in a molecule. It can be seen 
from the figure that as the density increases, the 
specific gravity of the pairs decreases, and more and 
more heavy molecules appear. Numerical 
calculation shows that the lifetime of molecules 
consisting of more than four particles does not 
exceed 20 characteristic times, whereas the average 
lifetime of pairs is about 100 characteristic times.
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Figure 5 – The average number of polyatomic complexes in the system

Figure 6 shows the charge distribution of 
molecules. It can be seen that the highest number is 
represented by singly charged molecules.

We also measured the average energy of the 
interaction of a free electron with the system. It was 
taken into account that some heavy molecules were 
charge carriers, which had an additional effect on 
the motion of free particles. The obtained data are 
presented in Figure 7. Solid thick line – the energy 

of the interaction of particles at a medium distance, 
the dashed line and the double dashed line are the 
Debye theory in the large and small canonical 
ensemble, respectively, the data of molecular 
dynamics calculations are shown by dots. It can be 
seen that the measured average interaction energy of 
a free electron with the entire system turns out to be 
close to the interaction energy of particles at an 
average distance, but slightly exceeds the latter.
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Figure 7 – The average energy of the interaction of a free electron with free particles
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The relaxation of model Coulomb systems is 
studied by the molecular dynamics method in papers 
[7–9] and the recombination coefficient in a 
nonideal plasma is calculated. The flux in the energy 
space is calculated in [7], and in [8] the increase of 
the number of bound states is analyzed, which are 
determined by the number of revolutions of the 
electron around the ion. In the present work, we 
evaluated the role of non-Maxwell in the 
recombination coefficient. In accordance with 
Thomson's theory, the recombination frequency is 
proportional to the velocity of the incident electron, 
the scattering cross section, and the cube of the 
Landau length, which leads to the dependence 

29−T .
The correction factor was calculated by the 

formula
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where in the numerator averaging was performed 
with the Maxwell distribution function (6), and in 
the denominator with (3).

Using the expression for the Thomson 
recombination coefficient α

29
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e
=α     (15)

we get )(γαα KNM = . Figure 8 presents theoretical 

dependencies α and NMα from γ in coordinates

γωα ,/ pen , as well as numerical simulation data
[7,8] and [9].

4 Conclusions

This paper investigates the relaxation of a 
charge-symmetric system of Coulomb particles to 
an equilibrium state. It is shown that in the system 
with the selected interaction potential (7) bound 
states arise. The temperature relaxation process 
coincides in time with the establishment of 
ionization equilibrium between bound and free 
states. A direct “measurement” of the distribution 
function of free particles by the kinetic energy in the 
equilibrium state was carried out. Its deviation from 
Maxwellian, due to a decrease in the configurational 
space of free particles, was recorded. The free 
charge subsystem turned out to be “hotter” than all 
the charges in general. The kinetic energy 
distribution of the entire set of charges (bound and 
free) remains Maxwellian.

The influence of the non-Maxwell of the 
electron distribution function on the recombination 
coefficient is estimated.

The relaxation of the radial distribution function 
of all particles is investigated in the approximation 
of the nearest neighbor. At equilibrium, the radial 
distribution function measured in this way coincides 
with the theoretical one within the error of 
averaging.

The measured average interaction energy of a 
free electron with the entire system is close to the 
interaction energy of particles at an average 
distance, which indicates the saturation of the 
Coulomb nonideality in the system of free charges. 
In the subsystem of bound particles with increasing 
density, along with paired particles, polyatomic 
complexes are also formed, i.e. there is a clustering 
process.
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Thus, the main effect of nonideality in the 
system with increasing density is associated with the 

formation of composite complexes, while the 
interaction energy of free charges grows slightly.
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