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The computer simulation from the first principles allows us to obtain results for systems consisting of 
many particles and interacting according to the Coulomb law (plasma, star clusters and astrophysical 
objects). In this work, the methodology of simulation for Coulomb systems is investigated. The influence 
of rounding errors, integration errors of reversible Newton equations is studied on the characteristics of 
Coulomb collisions on the basis of the consideration of several model problems. The trajectories of two 
particles attracted to the positively charged force center are got for various initial coordinates and 
velocities and also their energetic natures are researched. It is shown that the symmetries are broken and 
the particle paths are destroyed due to rounding errors and calculation errors. The degree of deviation 
from symmetry is described by the value of the Lyapunov exponent, which characterizes the chaos and 
turbulence in plasmas for the system. The results can be also extended to the system of gravitating 
masses.
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1 Introduction

The physics of elementary processes in dense 
plasma is one of the fundamental directions in 
modern physics, v of such system’s properties is of 
considerable interest in connection with the study 
of natural plasma phenomena occurring in 
astrophysical objects, the creation of the scientific 
foundations of new plasma technologies and the 
solution of the problem of controlled 
thermonuclear fusion. There are some problems 
associated with the lack of adequate theoretical 
models for some plasma phenomena and the 
multiparameter nature of such systems. In the 
experimental study of the properties of such 
plasmas, In such situations, the problem is partially 
solved by using modern methods of computer 
modeling of physical systems [1-7]. The main 
properties of the classical Coulomb plasma were 
studied by the method of the dynamics of many 
particles for determination of the thermodynamic 
characteristics, the distributed microfields, 
shielding and etc. [8-12]. In this paper we have 
used numerical simulation methods for describing 

of the collisions of Coulomb particles and for 
estimation of Lyapunov exponent, which 
characterizes the chaos and turbulence in plasmas.
Relaxation of kinetic energy to equilibrium state 
was studied by molecular dynamic method for non-
equilibrium strongly coupled plasmas [13], where 
the concept of dynamical memory time tm was
discussed. The fluctuation of energy ∆Е and K-
entropy was treated. The Lyapunov exponent in the 
phase space for ion one-component plasmas with 
the use of the three-dimensional SCOPE had been 
evaluated in [9]. The parameter describing chaotic 
treatment of system was got as a function of the 
time integral of the correlation function for the 
second derivative of the interparticle potential, that 
establishes a link between the Lyapunov exponent 
and the transport coefficients [14]. There were 
developed an analytical model for the largest 
Lyapunov exponent in dilute plasma. The model 
showed that it related to the dielectric response
function [15]. The effect of inevitable experimental 
noise had been investigated and its full spectrum 
has been achieved to confirm transition from 
quasiperiodicity to chaos in plasma [16-18].
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2 The simulation method  

The idea of particle method is the numerically 
solving the motion equations of (Newton's 
equations) for a system of particles interacting with 
each other and with the walls. The particle method 
is based on the ideology of modeling from the first 
principles (ab initio) [19].  

The problem of the occurrence of chaos in 
dynamical systems also attracts attention in 
connection with the transition from reversible 
equations of dynamics to irreversible kinetic 
equations. The computer simulation from the first 
principles allows us to obtain results for systems 
consisting of many particles and interacting 
according to the Coulomb law (plasma, star 
clusters). Instability of trajectories, irreversibility of 
the numerical solutions, mixing of the phase volume 
in Hamiltonian systems led to a slowdown in 
recombination in a system of a limited number of 
particles. 

The present work is devoted to the research of 
the divergence rate of initially close phase 
trajectories of the classical Coulomb system. In our 
opinion, the particle method is very fruitful in 
studying the fundamental properties of a system of 
many particles. The simulation from the first 
principles gives the possibility to study the 
occurrence of chaos in nonlinear dynamical systems. 
The progress in the study of dynamic chaos based 
on the Kolmogorov-Arnold-Moser theorem (KAM 
theory) for the Coulomb system of particles has 
limited applicability due to the non-integrability of 
the system [20-22]. In the present work the rate of 
initially close phase trajectories in the system the 
plasma non-ideality index, and the calculation 
accuracy are investigated on the basis of numerical 
simulation and analytical estimates. For criterion for 
the similarity characteristics of equilibrium plasma 
is used the Lyapunov exponent [23-25]. 

On the calculation of the divergence rate of 
initially close phase trajectories we use the 
Lyapunov exponent, which is the most important 
quantitative characteristic of Hamiltonian and 
dissipative systems. The Lyapunov exponents 
determine the measure of stochasticity of 
Hamiltonian systems [26, 27]. The maximum of 
them 1  is widely used as a criterion for 
stochasticity [16]. 

Let the dynamics of a system consisting of 2n 
particles is determined by the equations: 

  ,   1, 2,...,12k
k

dx V x k n
dt

 

The difference between the vectors of two phase 
trajectories clossing to the initial moment is 

   2 1x x t x t   , that can be determined from 
the linearized equation 

,  d x dVG x G
dt dx


  

where G  is the Jacobian matrix. The average speed 
of the exponential divergence of the initial close 
phase trajectories is determined as follows [16, 17]: 

 
 1

1lim ln
0

d t
t d

   (1) 

at t   and  0 0d 

where          1 2 10 expd t x t x t d t    is 
the distance between close phase trajectories at the 
initial time 0t  . The solution of the linear equation 
for x can be written as: 

        
0

0 ,   exp
t

x T t x T t G x d 
 

     
 


expanding for small times τ the matrix exponential 
T(τ) in a series we get for eigenvalues of the 
transition matrix 1 + τλi, where λi is eigenvalues of 
the Jacobian matrix. For a linear system, the 
maximum eigenvalue λi of the Jacobian matrix 
determines the rate of exponential recession of the 
trajectories 1 1  . In this case, the path divergence 
vector becomes collinear to the corresponding 
eigenvector. 

The similarity criterion is the non-ideality 
parameter  2 / i eГ e rT , where  1/33 / 4i ir N
is radius of sphere with volume per particle, that 
follows from the dimension theory for the Coulomb 
system, where the radius of the sphere with volume 
per one ion. Therefore, for an equilibrium system 
with a Maxwellian distribution of particles over 
velocities, the Lyapunov exponent of particles’ 
system can be represented in the form of  
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 0
1 1 ,  c pt N   where  0

1 ,  pN   is the 

dimensionless Lyapunov exponent, ct  is the 
characteristic time. 

A rough estimate of the Lyapunov exponent for 
plasma can be obtained from an analogy with the 
known value of the Lyapunov exponent for rigid 
spheres with Maxwellian distribution [18]: 

32
0

1 1/2 3 3

23ln 1 ln 1
2 3

iT

i

V rRl
l R r R




       
   

      (2) 

where 21 /l R N  is the mean free length, 
1/2

0 4 /TV    is the average relative particle 
velocity, R is the radius of hard spheres, N is their 
density. The expression (2) determines the increase 
in the distance between initially close points of the 
phase trajectories in the form: 

     0 /0 1 / 2 V t ld t d l R 

Each collision of particles leads to an increase in 
the distance between phase trajectories by factor of 

 1 / 2l R .

3 The results and discussions 

In presented paper we consider several 
elementary problems on which there are 
demonstrated some features of simulation methods 
of Coulomb collisions. Moreover we acknowledge 
the effect of calculation errors on the physical result, 
rounding errors, irreversibility of difference 
schemes, and to methods for estimating the 
exponential spread of initially close phase 
trajectories. 

For clarity of presentation we study the 
dynamics of two particles moving in the same plane 
in the vicinity of an infinitely heavy (motionless) 
power center. For convenience there are used the 
dimensionless units in which the charge and mass of 
the moving particles are equal to unity. 

We consider four formulations of the problems 
of the motion of two particles in the field of a force 
center attracting them. 

1) The trajectories of two particles attracted
to the positively charged force center are showed in 
figure 1, they repel each other. The initial position 
of the first particle is a circular orbit of radius 0.05. 
The second another particle flies to the first particle 

from far to the right with an impact parameter of 
0.04 on speed 1. The total energy of the first particle 
is negative, it is in finite orbit, the total energy of the 
second particle is positive and it is free, but the full 
energy of whole system is negative. 

 The figure obviously shows the physics of the 
polarization interaction of an electron with a 
monovalent atom: an electron swooping on an atom 
polarizes it, an electron begins to be attracted to the 
induced dipole, then as a result of a close collision it 
passes to a bound orbit and the first electron 
becomes free. In this case, the total energy of a free 
electron after collision increases, i.e. appropriately 
there is occurred that a bound electron sinks deeper 
into a potential well. A more detailed study of this 
process with the calculation of all average 
characteristics, in particular, the diffusion 
coefficient of bound electron along the energy axis 
will be presented in a separate work. 

2) The trajectories of two particles, attracted
to a positively charged force center are showed in 
figures 2-4, they repeal each other and their energy 
characteristics are given in figures 5-8. The initial 
position of the first particle is the same as in the first 
problem, but the second is located symmetrically 
with respect to the center at the same speed. In this 
formulation, the particles have move along elliptical 
trajectories symmetrically with respect to the force 
center. 

 There are followed the breaking of symmetry 
and the particle paths are destroyed due to rounding 
errors and calculation errors. The degree of 
deviation from symmetry is characterized by the 
value of the Lyapunov exponent for this system. 

3) In figures 9-11 there are demonstrated the
trajectories of the same as in the previous problem 
of the symmetric system, but the particles move in 
elliptical orbits. The time dependence of the 
absolute value of the difference in kinetic energy of 
two charged particles is presented in figures 12, 13 
for this system, where they move around the center 
of force with initial coordinates and velocities. 

In this case, the difference in the kinetic energies 
of the initially symmetric system is determined by 
the spreading rate of initially close phase 
trajectories. In this formulation the initial deviation 
is not specified, but it is obtained as a result of the 
accumulation of rounding errors over time period in 
order of 10. Further the divergence of the 
trajectories (energies) is characterized by 
exponential growth. The indicator of this growth is 
the Lyapunov exponent (the slope of the straight 
line in the semi-logarithmic scale is in figure 13). 
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Figure 3 – The trajectory of charged particle around a 
force center with initial coordinate and velocity:

P1(0, 0.05, 0) ; V1(-4, 0, 0)

Figure 4 – The trajectory of charged particle around a 
force center with initial coordinate and velocity:

P2(0, -0.05, 0) ; V2(4, 0, 0)

Figure 1 – The trajectory of two charged particles around a 
force center with initial coordinates and velocities:

P1(0, 0.05, 0) ; V1(-4, 0, 0) and
P2(1, 0.04, 0) ; V2(-1, 0, 0)

Figure 2 – The trajectory of two charged particles around a 
force center with initial coordinates and velocities:

P1(0, 0.05, 0) ; V1(-4, 0, 0);
P2(0, -0.05, 0) ; V2(4, 0, 0)
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Figure 5 – The kinetic energy of charged particle around a 
force center with initial coordinate and velocity:

P1(0, 0.05, 0) ; V1(-4, 0, 0)

Figure 6 – The kinetic energy of charged particle around a 
force center with initial coordinate and velocity:

P2(0, -0.05, 0) ; V2(4, 0, 0)

Figure 7 – The potential energy of charged particle 
around a force center with initial coordinate and velocity:

P1(0, 0.05, 0) ; V1(-4, 0, 0)

Figure 8 – The potential energy of charged particle 
around a force center with initial coordinate and velocity:

P2(0, -0.05, 0) ; V2(4, 0, 0)
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Figure 9 – The trajectory of charged particle around a 
force center with initial coordinate and velocity:

P1(1, 0, 0) ; V1(0, 1, 0)

Figure 10 – The trajectory of charged particle around a 
force center with initial coordinate and velocity:

P2(-1, 0, 0) ; V2(0, -1, 0)

Figure 11 – The trajectory of two charged particles around a force center
with initial coordinates and velocities:

P1(1, 0, 0) ; V1(0, 1, 0) and P2(-1, 0, 0) ; V2(0, -1, 0)
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Figure 12 – The time dependence of absolute value of the 
kinetic energy difference of two charged particles which 
move around a force center with initial coordinates and 

velocities:
P1(1, 0, 0) ; V1(0, 1, 0) and P2(-1, 0, 0) ; V2(0, -1, 0)

Figure 13 – The time dependence of absolute value of the 
kinetic energy difference of two charged particles which 
move around a force center with initial coordinates and 

velocities:
P1(1, 0, 0) ; V1(0, 1, 0) and P2(-1, 0, 0) ; V2(0, -1, 0)

Figure 14 – The absolute value of the change in the difference of kinetic energies of two charged particles 
around a force center with initial velocities V1(0, 1, 0) и V2(0, -1, 0) and

with different initial coordinates at the initial time
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4) The similar time-dependent dependences of 
the absolute value of the kinetic energy difference of 
two charged particles is showed in figure 14, they 
move around the center of force with initial 
coordinates and velocities. But in this case the 
difference is that the total energies is defined by a 
bit initial deviation of fluctuation of the second 
particle’s coordinate. In such setting, the further 
divergence of the trajectories (energies) is also 
characterized by exponential growth. The indicator 
of this growth is the Lyapunov exponent (slope of a 
straight line in a semi-logarithmic scale is in the 
figure 14).

3 Conclusions 

In this work the methodology of simulation for 
Coulomb systems is investigated. The influence of 
rounding errors, integration errors of reversible 

Newton equations is investigated on the 
characteristics of Coulomb collisions on the basis of 
the consideration of several model problems. The 
get results can be also extended to the system of 
gravitating masses. An estimate of the Lyapunov 
exponent for system of classical Coulomb particles 
on dependence of particle’s number in the system, 
the nonideality degree of plasma and the accuracy of 
integration of Newton's equations can be useful for 
analyzing the results of modeling systems with a 
large number of particles. The main attention is paid 
to the case of the interaction of free and bound 
particles, which is especially important at 
consideration of strongly non-ideal systems.
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