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In this article the review of interaction potentials for compound particles (i.e. atoms, clusters etc.) of 
complex plasmas that have been derived and developed by academician Fazylkhan Baimbetov and his 
students over the past 25 years is given. Complex plasmas such us dense non-ideal plasmas, partially 
ionized plasmas, dusty plasmas are considered. We consider effective interaction potentials for classical 
non-ideal plasmas, semiclassical weakly coupled plasmas, and quantum plasmas. The effective potentials 
include relevant effects of non-idelaity and quantum degeneracy. These effective potentials are for 
equilibrium and stationary out-of equilibrium state of plasmas. In the latter case, the effect of dynamical 
screening resulting in oscillatory pattern of the potential due to formation of the wakefield considered in 
both classical and quantum plasmas is taken into account. There appears anomalous behavior of the 
wakefield in quantum plasmas. Atoms and dust particles are considered to be compound particles with 
allowance for polarization, i.e acquiring a dipole moment. The screening of the field of such dipoles are 
considered making use the multipole expansion of the screened Coulomb potential. Additionally, the 
discussion of these results comparing to works of researchers from elsewhere is presented. The further 
development of the effective potential theory should determine what effect the plasma streaming will 
have on transport properties such as viscosity and diffusion of non-ideal plasmas. 
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1 Introduction 

Over the last several decades, researchers from 
various countries have shown increased interest in 
non-ideal plasmas; where the latter is characterized 
by importance of interparticle interactions. Initially, 
interest   in non-ideal plasmas was due to the 
nuclear defense projects in several countries. Later, 
the research in non-ideal plasmas has been 
continuously fueled by   the national ignition 
campaign in the US as well as other technological 
applications, such as pulsed MHD generators, rocket 
engines with a gas-phase reactor and plasmatrons. 
Nowadays, the interest in non-ideal plasmas is 
boosted by the laser-plasma experiments allowing to 
study the extreme state of matter in laboratory.  This 
paves the way to investigate the properties of state 
of matter in various astrophysical objects (white 
dwarfs, giant planets etc.) in unprecedented details.  

Besides that, large variety of scientific and 
technological problems is associated with strongly 

coupled dusty plasmas. For an adequate study of the 
properties of plasmas of such complex composition 
as dusty plasmas and non-ideal plasmas in general, 
it is of utmost importance to know the interaction 
potentials of the components of the system. The 
important physical effects that we should be taken 
into account are collective effects (higher-order 
correlations, screening, the interaction of a large 
number of particles, etc.) and quantum-mechanical 
effects (diffraction, symmetry, etc.). 

2 Pseudopotential models of the interaction of 
particles of classical non-ideal plasmas 

In plasmas, it is necessary to take into account 
the effects associated with the simultaneous 
interaction of a large number of charged particles 
due to long-range nature of the Coulomb interaction. 
As was expressed in F. Baimbetov's doctoral 
dissertation [1], higher order correlations can be 
taken into account not only in the particle 
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distribution functions, but also in the potential of 
their interaction. As it is known, taking into account 
pair correlations in a rarefied system leads to the 
well-known Debye-Hückel potential. With 
increasing density, the average distance between 
particles decreases. In this case, the particles spend 
more and more time interacting with each other (the 
Klimontovich “delay” effect), the average particle 
interaction energy increases and the plasma 
properties can no longer be described in terms of 
pair correlations. Under these conditions, higher 
order correlations at large and quantum effects at 
small distances can be taken into account in the 
potential of interparticle interactions. 

2.1 The equation for the effective potential 
(pseudopotential) of dense plasmas [2,3] 

As already noted, in highly ionized plasmas at 
large distances between particles the interparticle 
interaction potential is different from the Coulomb 
interaction due to the effect of screening. In this 
regard, a method of computing a potential that takes 
into account collective (correlation) effects at large 
distances it is of great interest. The Bogolyubov 
chain for the equilibrium distribution functions [4] 
was taken as such a method and an equation for the 
effective potential (pseudopotential) was obtained 
on its basis qk ,  taking into account the 
simultaneous correlation of particles in the 
framework of pair additivity [3]: 
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here ij  is the microscopic Coulomb potential, 

Bk T   and  kq,  are the types of particles. In the
approximation of pair correlations ( 2S ), equation 
(1) leads to the Debye-Hückel potential as expected. 
In the three-particle correlations approximation, 
after symmetrizing and integrating the individual 
terms in (1), we have [3]: 

2          (2) 

where ( )R  is the effective potential in units of;

Bk T  , / DR r r ; Dr  – Debye radius;   – 
Laplace operator. The minus sign corresponds to the 
interaction of the likewise charges, and the plus sign 
corresponds to the interaction of oppositely charged 
plasma particles. 

2.2 Classical dense plasma model 

To build a model of classical dense plasmas, it is 
necessary to take into account that 

at small distances, the interaction between 
particles is described by the Coulomb potential, and 
at large distances it is equal to zero: 
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here    
The boundary value problem (3) is nonlinear; 

therefore, it is solved numerically. However, in a 
fairly wide range of the parameter, the numerical 
solution (3) is approximated with a high degree of 
accuracy by the following interpolation formula 
[3,5]: 
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where    1 2( ) ( 1)(1 ) / 5R Rf R e e     and   
( )c  -a coefficient that depends on  .

2.3 Weakly coupled plasma model 

At parameters of weakly coupled classical 
plasmas, i.e. when, 2( ) / 1D BZe r k T    for 
problem (3), we can construct an asymptotic 
expansion [6]: 
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Here Ei(x) – integral exponential function, R0 – 
the distance of closest approach of the particles. 

3 Effective potentials for semiclassical 
plasmas 

The inclusion of quantum effects in the 
interaction of charged particles allows us to solve 
the problem of divergence at small distances. By 
defining the quantum mechanical Sleter sum of 
particles interacting via Coulomb potential and 
comparing it with the classical Boltzmann factor, an 
analytical expression for the potential was obtained 
in [7,8]: 
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where 1/2/ (2 )ab ab B aek T    –– de Broglie
wavelength, ab - reduced mass of interacting 
particles,  - Planck's constant. 

Potential (6) is widely known as the Deutsch 
potential and is used to study the physical properties 
of a semiclassical plasma. It should be noted that 
this potential takes into account only quantum 
effects of diffraction and symmetry, but does not 
take into account collective effects (for example, 
screening). Therefore, there is a need to obtain an 
effective interaction potential of particles of a dense 
quasiclassical plasma that takes into account both of 
the above effects. 

In Ref. [9], pseudopotentials of the interaction of 
charged particles were obtained, which take into 
account the quantum-mechanical effects of 
diffraction at short distances and the effects of 
screening of the field at large distances. For this 
purpose, the dielectric response functions were used. 
To take into account quantum effects, the Deutsch 
potential with the diffraction part was used as the 
interaction micropotential [7]: 
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and Coulomb potential was used as the 
micropotential of ion interaction. 

The analytical expression for the electron-
electron and electron-ion potential has the following 
form: 
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An expression was also obtained for the 
effective potential of ion-ion interaction [10, 11]:  
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The obtained effective potentials (8) and (9) are 
valid in the region of weakly degenerate plasma. 
These potentials were used in analytical calculations 
and computer simulations of the properties of a 
strongly coupled semiclassical plasma. 

4 Effective interparticle interaction potentials 
of partially-ionized dense plasmas taking into 
account polarization effects 

As the micropotential of interaction for electron 
– electron in the first case, as well as for electron-
dipole, dipole-dipole pairs, in the second case, we 
take the Deutsch micropotential (7). Consider a 
system of electrons and dipoles. A set of 
microscopic potentials is as follows: 
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where– / (2 )e Am k T   thermal de Broglie 
wavelength of electrons. 

Using the indicated micropotentials and 
performing the inverse Fourier transform, we obtain 
the screened potential for the interaction of the 
electron – atom pair when [12]:  
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are coefficients depending plasma density and 
temperature.   

In the limiting case Dr   potential (14) 
transforms into the well-known interaction potential 
of an isolated atom and an electron: 
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Finally, we consider a system of electrons and 
dipoles with the following micropotentials for  
electron-electron, electron-dipole, dipole-dipole 
pairs: 
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where it is assumed that in the interaction of an 
atom with an electron, diffraction effects are also 
taken into account. For this case, the following 
expression of the screened potential was obtained 
[12]: 
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In the limit Dr  , potential (19) goes over to 
the following formula: 
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This suggests that at small distances, potential 
(20) tends to a finite value and agrees well with the 
semi-empirical Buckingham potential [13]. 

We note that in [14, 15] an alternative approach 
was developed for obtaining effective potentials 
based on the linearized Poisson – Boltzmann 
equation, which follows from (1). One of the 
simplest options for taking into account interparticle 
interactions is a self-consistent chemical model, first 
proposed in [14]. It is entirely based on the 
renormalization procedure of particle interactions 
[15], which leads to the following generalized 
Poisson-Boltzmann equation for the macroscopic 
potential of interaction of particle species and, 
taking into account collective events in the medium
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Here ( , )a b
ab i j r r denotes the genuine 

microscopic interaction potential, a
ir  stands for the 

radius vector of the 𝑖𝑖'th particle with i  being the 

corresponding Laplace operator and cn  signifies the 
number density of particles of sort 𝑐𝑐. Note that 
above and everywhere below the summation is 
implied over the repeated subscripts of particle 
species. 

5 Semiclassical effective interaction potentials 
of ions in quantum plasmas [16, 17] 

At high enough plasma densities, it becomes 
necessary to describe the system on the basis of the 
effective interaction potential of the ions, taking into 
account their wave nature (quantum diffraction 
effect) at small distances. Taking into account the 
wave nature of the ions should lead to a finite value 
of the effective potential at zero and would allow for 
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the implementation of a semiclassical description of 
the ionic subsystem. The effective interaction 
potential, taking into account the wave nature of the 
ion at small interparticle distances, can be obtained 
using the dielectric response function method: 
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here iQ  is the charge of the ion. For this, in 
equation (21), instead of the Coulomb potential, it is 
necessary to use a semiclassical micropotential, 
which has a finite value for 0r  , for example, the 
Deutsch potential (7) with a De Broglie wavelength 
for ions. By calculating the dielectric response 
function in the random phase approximation in the 
long-wavelength limit, we obtain the following 
effective semiclassical interaction potential of ions 
in a dense two-component plasma with degenerate 
electrons: 
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where constants , , , , , ,A B C    depends on 
plasma parameters. 

It should be noted that in the limit , the 
effective potential (22) transforms into the Stanton 
and Murillo potential [18]. If we additionally 

neglect the gradient correction , we obtain a 
screened potential of the Yukawa type. The analysis 
showed that the effective semiclassical potential 
(22), which takes into account the quantum diffract-
tion effect, has a finite value for, on the contrary, a 
Yukawa type potential tends to infinity as. 

6 Effective interaction potentials of particles 
of semiclassical two-temperature plasmas 

In many experiments where a dense plasma is 
obtained, the temperature of electrons and ions has 
various values for quite a long time. Thus, it is 
important to take into account the fact that the 
plasma is non-isothermal. Dense plasma means a 
plasma where the average interparticle distance is 
comparable to the thermal wavelength of de Broglie 
particles and there is a high probability of particle 
collisions with a close encounter, in which it 
becomes important to take into account the wave 
nature of the colliding particles due to quantum-
mechanical effects such as diffraction and 
symmetry. These effects at small distances can be 
taken into account in the pair potential of particle 
interaction or micropotential. The electron-ion 
temperature can be expressed through the 
temperature of electrons and ions in the form, 

ei e iT T T  so that T T T    [19]. 
Using the method of the dielectric response 

function and (7) as the micropotential, we obtain the 
expression for the effective interaction potential of 
particles of a nonisothermal plasma: 
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The effective potential (23) describes the 

interaction for all pairs of particles of a 
nonisothermal plasma. From formula (23) we obtain 
an analytical expression for the effective potential of 
electron-electron interaction: 
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for the effective potential of ion-ion interaction: 
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Finally, for the effective potential of ion-ion 
interaction we have: 
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The obtained potentials satisfy all limit 
transitions. In the absence of shielding ,

0, 0, 0D i ek k k    formulas (24), (25) and 
(26) are equal reads: 
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respectively. These potentials coincides with 
micropotentials, which are used as initial ones. In 
the case 0, 0ee ei   , the expression for the
effective potential, formula (23) transforms into the 
formula for the screened Debye potential neglecting  
quantum effects. Under the condition 0ik  ,  the | 

effective potentials (24) – (26) are consistent with 
the potentials obtained in [9, 11]. Note that under 
the condition 2 24 1ee ek   and 0ik  , the 
expression for the ion-ion potential takes the 
following simplified form: 
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7 Effective interaction potentials of 
compound particles in classical plasmas [20-22] 

In many practical problems, it is necessary to 
consider the interaction of charged particles taking 
into account their internal structure. Types of 
particles the internal structure of which is important 
to take into account for the correct description of the 
plasma, will be referred to as compound particles. 
For example, such particles include atoms and 
micro- or nano-sized dust particles of a complex 
plasma, which were also considered in [23–25]. 
Now we consider the potential energy of interaction 
of the one system of charges with another system of 
charges located at a distance R  from the first (a 
schematic explanation is shown in Fig. 1), 

introducing the dipole moment 
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Using Eq. (28), for system of particles 
interacting via Coulomb potential, we find known 
result: 
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Figure 1 – Schematic explanation of the calculation of the interaction energy  

of two composite systems (particles)
  

 
Note that from expression (29) we can obtain all 

the basic formulas for potentials that are valid for 
various asymptotic cases [21]. We now consider the 
field of a composite particle in a polarizable medium. 

In such a medium, the field of a single charged 
particle is determined by a formula of the type (21). 
Using the methodology described above, we obtain 
the following expression for the effective potential: 
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We consider some limiting cases of potential 

(30). In particular, the case when two composite 
particles have parallel dipole moments is of interest. 
For such particles from Eq.~(30) we find: 

 
2 2

3exp( ) (1 )exp( )s s s
Q dRk Rk Rk
R R

       (31) 

 
where we set 1 2d d . 

In the case when the dust particles are located 
along the direction of the ion flux, from equation 
(30) we deduce:  

 
2

2 22

3

exp( )

2 (1 )exp( )
2

s

s
s s

Q Rk
R

R kd Rk Rk
R

   

   

      (32)  

 

As can be seen from Eq. (32), at long distances, 
attraction between like charged particles occurs 
along the direction of the ion flow. This behavior of 
dust particles was observed in experiments on dusty 
plasmas in a gas discharge of direct current. Note 
that the oscillatory nature of the effective dipole – 
dipole interaction, responsible for the formation of 
ordered structures in a dusty plasmas, is also shown 
in Ref. [20]. 

For the case of the interaction of a charge with a 
dipole, we obtain: 

 

1 2
3 (1 ) exp( )d ch s s

Q d R Rk Rk
R   
 

    (33) 

 
The interaction of two dipoles, ,

1 1 1 20, 0, 0Q Q d d   
 

 is described by the 
following formula: 
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R

   
  
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.            (34) 

8 Effective interaction potentials of 
compound particles in quantum plasmas 

As it is known, in dense plasma, when the 
thermal wavelength of electrons 

/ (2 )e Bm k T    becomes comparable with the
average interparticle distance, it is necessary to take 
into account the wave nature of electrons. Calcu-
lating the static dielectric function in the random 
phase approximation, we find the interaction energy 
of two composite particles in a dense plasma: 

1 2 2 1 1 2
1 23

2
1 2 2 1 2 3

5
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R R
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
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  
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  (35) 

where for convenience the following functions are 
introduced: 

 2 2
2 2

1 2 2 2

1 1(exp( )( ) exp ( )
( )

1 (2 / )
ee ee

D ee

BR B AR A
f R

k
 

  

    



   (36) 

 2 2
2 2

2 2 2 2

1 1(exp( )(1 )( ) exp (1 )( )
( )

1 (2 / )
ee ee

D ee

BR RB B AR RA A
f R

k
 

  

      



       (37) 

. 

 

 

2 2 2 2
2 2

2 2 2
3 2 2 2

2 2 2 2
2 2

1 13exp( )(1 )( ) exp (1 )( )

1 1 (2 / )( )
1 (2 / ) 1 13exp( )(1 )( ) exp ( )

ee ee

D ee

D ee

ee ee

BR RB B BR B R RA B

kf R
k

AR RA A AR A R A

 

  
  

 

         
 
 
 
        
 

 (38) 

Effective potential (35) at 0ee   and
0  reduces to the  effective potentials (30).

9 Dynamically screened potential of an ion in 
a stationary nonequilibrium plasma [26, 27] 

It is known that often in experiments dense 
plasmas far from the equilibrium state are created. 
For instance, in experiments on the compression of 
matter by lasers and high-energy particle beams, a 
flow of particles of one type relative to particles of 
another type appears. In such a plasma, statically  

screened interaction potentials do not provide a 
satisfactory description. It is necessary to take into 
account the effect of dynamic screening. Let us 
consider the dynamically screened potential of an 
ion in a dense plasma with a density parameter 

1sr  , i.e., with a density 24 310n cm . The 
electron degeneracy parameter is taken within 
0.01 10  . The effects of non-ideality in the 
electronic subsystem are taken into account on the 
basis of the relationship between the collision 
frequency and the dielectric constant  
of Mermin: 
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Using relation (21) with dielectric function (39), 

dynamically screened ion-ion interaction potential 
in a stationary nonequilibrium plasma can be 
computed. A typical dynamically screened ion field 
is shown in Figure 2. For clarity, the “inverted” 
form of the potential is shown, that is, multiplied by 
-1. The peak in Figure 2 (minimum of potential) 
behind an ion, relative to the flux of electrons, 
corresponds to the area where ions attracts to each-
other.  

 

 
Figure 2 – Dynamically screened potential  

of an ion in a quantum plasma. The ion is located  
at the point (r = 0: z = 0). The electron flux is directed 

from left to right. For purposes of illustration, the inverse 
of the ion potential is shown, i.e. multiplied by -1. 
 
 
10 Conclusions and Outlook  
 
The overview of the results on the effective 

interaction potentials of plasma particles that have 
been obtained over the past 25 years by 
representatives of the academic school of plasma 
physics of academician Fazylkhan Baimbetov is 
given. These effective potentials have proven to  
 

provide adequate description of the various physical 
properties and processes occurring in a complex 
plasma. 

Obtained effective potentials can be used for the 
computation of the various physical properties of 
plasmas. The transport properties can be found 
using the effective interaction potential for 
computation of the scattering cross section and 
relevant Coulomb logarithm. Furthermore, the 
scattering cross section can be used to compute the 
collision frequency and, thus, the temperature 
relaxation.  Additionally, the knowledge of the 
collision frequency allows to investigate the optical 
properties of plasma using the relaxation time 
approximation for the closure of the one particle 
kinetic equation. Next, the effective interaction 
potentials can be used to compute structural 
properties, such as radial distribution function of 
particles and static structure factor, making use of 
the integral equations. Therefore, once radial 
distribution function is known, thermodynamic 
properties can be easily calculated. 

Although non-ideal plasmas created in 
experiments are usually non-equilibrium, most of 
the works considered equilibrium non-ideal 
plasmas. The results on screening of the test charge 
in classical as well as quantum streaming plasmas 
clearly shows that dynamically screened potential 
can significantly deviate from that of in equilibrium 
plasmas. Therefore, it is interesting to study 
transport properties of particles in streaming 
plasmas. In other words, what is the effect of plasma 
streaming on such transport properties as viscosity 
and diffusion of non-ideal plasmas.  It is anticipated 
that the further development of the effective 
potential theory should give an answer to this 
question.   
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