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Considering hot/dense plasmas strongly ionized and still retaining hydrogenic bound states (1 ≤ z ≤ 6), we 
focus attention on the delocalization features of ion-electron orbitals, such as wide spreading and 
attending of pertaining wave functions close to the free bound transition. A systematic embedding process 
of increasingly excited states is shown to introduce short-range corrections to the Debye potential, while 
highlighting blue line shifts relative to initial Debye data. D-Dependence of a ion-electron dipole bound 
in a Debye potential evaluated. The probability of presence r2 R2nl (r) of the electron around its bounding 
ion are plotted. Orbitals 1S and 2S in a 3-component hydrogen plasma with T = 8.62 eV and ne = 
2.24x1023 cm-3 are calculated. A classical – partially degenerate difference is shown. Normalized 
solutions to quantum – mechanical equation for partially ionized hydrogen are obtained. Also levels 
deeply involved in the bound-free transition, close to vanishing in the continuum are shown.  
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1 Introduction  
 
It seems that the plasma physics community is 

presently experiencing a continuous and steadily 
increasing reassessment of the basic concept, pillars 
of our discipline. A few salient examples among 
many, focus on deep and refined re-examination of 
the Debye screening length altogether with a deep 
mathematical interpretation of the nonlinear Landau 
damping [1-4]. Boltzmann – Maxwell equilibria are 
also under a scrutiny through non-extensive 
statistical physics [5] featuring non – Maxwellian 
distributions. These revisitations lead to the 
introduction of novel perspectives in the whole field 
of plasma physics, they are often motivated by 
theoretical breakthroughs in other disciplines. In this 
context, we do intend to give a specific attention to 
the remaining Debye bound states in strongly 
ionized hot/dense plasmas with ion change 1≤ z ≤ 6. 

Considering those hydrogenic levels in the usual 
temperature Saha – distribution, we then focus on 
pressure effects, and highlighting the priority of 

messy interaction of excited Debye orbitals. As well 
documented, in contradistinction to the Coulomb 
spectrum, Debye bound states are finite in number, 
and the lowest ones could be well approximated as 
non-degenerate Coulombic. Therefore, a typical 
electron-ion orbital may be allocated the 
approximate average extension (a.u.) [6] 
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with the Bohr radius ao = 5.29*10-9 cm already 
demonstrating a possible inclusion of small orbitals 
within those endowed with a larger main quantum 
number, an effect particularly conspicuous for l= n-
1. At this stage it appears fruitful to make contact 
with a methodology developed in condensed matter 
physics. 

Here, we allude to the systematic embedding of 
bound orbitals featuring long-range interactions 
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between dislocations [7, 8], monitored by a 2D 
Coulomb interaction [9-11]. In this regard, we 
emphasize hot/dense plasmas with a Debye length 
(ne, electron density) 
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where nz is density of fully stripped ions with charge 
Z, nz – 1 is density of hydrogenic ions with charge 
Z-1 and mass mi. For the sake of simplicity we 
restrict ourselves to a 3-component system 
consisting of electrons, bare ions of nuclear charge 

Z in Saha equilibrium and hydrogenic ions of total 
charge Z-1. 

Those plasmas share an electron plasma 
parameter 
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with De, electron restriction of Eq.(2). 

Then, the extension (1) of the lowest bound 
orbitals are contrasted in Table I to mean 
interparticle distance Ro and electron thermal 
wavelength. 

 
 

Table 1 – Relevant Lengths (in a/Z) in Dense Hydrogenic Plasma with Plasma Parameter Λ� � ��� (Number of Particles in Debye 
Sphere 0.23) 
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D 
Z=1 Z=2 Z=3 Z=4 Z=5 Z=6 

nl 
R0 rnl R0 rnl R0 rnl R0 rnl R0 rnl R0 rnl 

42.86 10  4 4.556 1.577 
12.370 4.555 1.577

12.582 4.554 1.577
12.813 4.554 1.577

12.813 4.553 1.577 
12.883 4.553 1.577

12.937
1s
2s 

43.575 10  5 5.395 
1.550 

8.6660 
8.69834 

5.2557
1.550
8.706 
9.139 

5.176
1.550
8.735
9.241

5.124
1.555
8.755
9.312

5.088 
1.555 
8.769 
9.366 

5.061 
1.555
8.780
9.407

1s
2s 
2p 

 
 
rnl data are plotted in order of increasing 

excitation (1s, 2s, 2p, 3s, etc....). The average spatial 
extension of higher orbitals is clearly larger than D 
and R0. 

It should also be noticed that enhanced rnl goes 
hand in hand with large orbiting time nl , fulfilling 
according to the correspondence principle. 
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for a pure Coulomb interaction ( )D  , while 
providing a lower bond to corresponding Debye 

.nl  We now stress the view, that electron-ion 
bound pairs can be seen as electric dipoles internally 
screening the Debye interaction within the biggest 
dipoles containing them, while simultaneously 
experiencing the in-uence of less e xtended dipoles 
included by them. One can picture this ordering of 
embedded electric dipoles as an analog to the 
familiar Russian puppets (Babushkas) thus 
mimicking their apparently inextricable entang-

lement. This scenario will then be devoted a 
systematic attention in the sequel. 

The required Debye-Saha framework is then 
given attention in Section 2. 

A preliminary exposition of the nonlinear 
resumption process, implying successively 
embedded dipoles is presented in Section 3 within a 
classical setting (l=0), allowing for the introduction 
of the dielectric quantity ( )r . 

A full quantum-mechanical (l�0), extension is 
laid out in Section 4. Its Z-dependence is thoroughly 
examined in Section 5. 

Blue line shifts with respect to the red ones 
featured by the bare Debye potential are 
demonstrated in Section 6. A summary is finally 
given in Section 7. 

 
2 Debye-Saha framework 
 
The remaining Debye bound states in the above 

introduced hot/dense 3-component plasma fulfil  

(
1
Bk T

  ), �� � �� 𝑛𝑛��� � � 𝑛𝑛� � 𝑛𝑛�� charge 
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conversation (5) 
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In terms of ionization potentials  
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E1S refers to the ion grand state and Ei to the 

remaining discrete spectrum of excited energies. 
Expression (2) for the Debye length can be usefully 
reexpressed as 
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reintroduced iteratively in (9) yields a stabilized Z  
and K values, altogether with access to the dipole 
density nZ-1. Pertaining plasma parameter e  
(Eq.(3)) ranges between 0.5 and 1. Time stability of 
the atomic dipoles is now qualified with respect to 
the plasma collision time. 
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with pe , electron plasma frequency. 

Moreover, orbiting time of the highest 
remaining bound orbitals may also be evaluated 
through the WKB approximation 
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through a bound state pseudo- analytic expression 
[12]:  
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with Znl given by Enl (Znl, D) = 0 (delocalization 
effect) and 

 
A =1.9765, 𝜎𝜎= 0.003951, B = 1.2334. 

 
It is then appropriate to scale the various 

considered times with the Coulomb orbiting time 
 

2
17

( ) 2
2 2.4 10 secnl cb

n
Z
    ,        (14) 

 

Fulfilling ( ) 1nl Debye
coll
e




 , any (n, l) ,       (15) 

 

For instance, 0.7e   with 04aD
Z

  gives 

1.2 for the ratio of the pair (4,3). Therefrom one 
reaches 
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and a given (nmax, l) may be selected out with 
 
 

4 1/ 6 3 2 / 3
max 10 ( )en n cm Z   ,        (17) 

 

So that ( ) 1nl Debye
coll
e




  illustrating the collisional 

stability of the highest but still bound Debye 
orbitals. To secure the ingoing renormalization 
procedure, one is led to assume electric neutrality 
within every considered arrangement taking place 
on a ( )nl Debye  timescale, in close analogy with the 
so-called average atom model (AAM).[13] 
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3 Classical treatment  
 
A) Dipole D-Dependence 
As a prelude to the systematics of the dipole 

embedding process, it is of interest to pay a due 
attention to the D-Dependence of a ion-electron 
dipole bound in a Debye potential. Figures 1 a,b 
picture the probability of presence r2R2

nl (r) of the 
electron around its bounding ion. Rnl (r) denotes the 
usual Debye and radial wave function herein 
restricted to low-lying orbits, 1S and 2S in a pretty 
correlated hydrogen (Z=1) plasma with T = 8.618 
eV (105K) and ne=2.24 x1023 cm-3 Corresponding 
Fermi temperature TF= 13.462 eV features a typical 
case of partial degeneracy – strong coupling plasma, 
allowing for a vivid illustration of the progressive 
desappearance of bound orbitals through enhanced 

delocalisation when strong coupling and concom-
mittent partial electron degeneracy increase [11]. 

Those pictures highlight conspicuously swift 
bound – free transitions of the remaining 1S and 2S 
bound states (Figures 1 b, d) when the screening 
length D decays even by a very small amount.  

Delocalisation is then signalled by the rather 
impressive wave function flattening. Those data got 

derived from the classical Debye interaction 
/r De

r



 

for a 3-component plasma featuring partial 
degeneracy (TF>T) because the quantitative 
difference between the usual interaction and its 
degeneracy – corrected counterpart [14-16] remains 
negligible (see Figure 2) for r2Rnl

2 (r) in the present 
situation. 

 
 

 

 
 

Figure 1 – Orbitals 1S and 2S in a 3-component hydrogen plasma with T = 8.62 eV and ne=2.24x1023 cm-3.  
(a) 1s with D=100→1 a0 , (b) 1S with D=1→0.869 a0, (c) 2S with D=100→10 a0 and (d) 2S with D=10→3.333 a0. 
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Figure 2 – Classical – partially degenerate difference 

 
/

1 cos( / )
r De r D
r



  for Figures 1 plasma  

(T=8.62 eV, ne=2.24x1023 cm-3) 
 

 
B) Dipole Embedding 
Restricting first to � � 𝑟 states, we initialize the 

embedding process with the simplifying assumption 
that every orbitals (n,l) corresponds to an electric 
dipole wholly contained in the (n', l') orbit, whether 
�𝑦 � �. Recalling also that in moderately coupled 
plasmas ( 1e  ) of present concern, electron 
exchange effects are only of significance in a 
relative distance ≤1 a.u [17], while ion-ion Coulomb 
interaction remains nonnegligible for interdistances 
≤4.a.u., we can focus attention on dipole-dipole 
interactions mimiking superimposed and closed 
Debye orbitals in a Russian puppet – like 
arrangement. Then, smaller dipoles of less spatial 
extension and paced at higher velocity impact those 
immediately including them through a local 
dielectric quantity ( )r , fulfilling ( ) 1r

dr


 . 

We also emphasize that direct Coulomb 
interaction within ion fluid may be considered as 
exactly compensated by the homogeneous free 
electron background, without noticeable gradient.  

So, thermal eects are not expected to produce a 
signicant departure from charge neutrality at the 
considered dipole level.  

Now, we consider the (n, l) dipole polarisability 
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with electric charge e and averaged over 
instantaneous change configurations submitted to 
the Boltzmann statistical factor (� � 𝑟) 
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with a modied screened interaction accounting 

for the inclusion of enclosed smaller dipoles thus 
providing additional short-range inner screening to 
the initially long range one.  

Putting Eq.(19) into Eq.(18) yields 
 

2 2
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3
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Then, denoting n as the overall dipole density, 
one has dn(r) dipoles in the (r,r + dr) range, so that 
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with susceptibility variation ( ) ( )d P r dn r  , 
presently restricted to � � 𝑟 states, and satisfying 

 
2 2

2 4 / /
0 4 ( )

3 ( )
r D rd e en r Exp e e

dr r r
  


  

   
 

 (22) 

 
with an interaction regularized at 𝑟𝑟 � 𝑟, through 
electron thermal wavelength. n0 should be taken 
large enough to validate the macroscopic 
relationship ( 1) / 4    . 

Then, introducing 
2

( )
ey
r




  in Eq. (22), leads 

to the classical and nonlinear relationship 
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already exhibiting the main characteristics of the 
following quantum treatment with � � 𝑟. At 𝑟𝑟 𝑟 𝑟, 
𝑦𝑦𝑦 𝑟 𝑟, while 𝑟𝑟 𝑟 𝑟 features the asymptotic result 
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with lim 𝑦𝑦 � 𝑟 for 𝑟𝑟 𝑟 𝑟 , as depicted in Figure 3.  
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Figure 3 – Normalized asymptonic solution 

 to the classical relationship (23)  
 

 
4 Quantum – mechanical treatment ( ) 

 
Switching now to any , we make an intense 

use of the radial wave function Rnl(r) while securing 
the dipole density normalization with 
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Again, the instantaneous number of dipoles 

writes as 
 

2 2 2( ) ( ) ( )nl nl nldn r n r r R r dr ,             (26) 
 

for the (n, l) dipole density nnl. It will also 
convenient to select a given excited orbital (n0, l0), 
so every (n, l) fulfilling 0 or l(≤ n-1) <l0 

provides a contribution to 0n  which reads as 
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with Saha – distributed excited states, 
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I denotes ionization potential and E0

nl qualifies 
the (n, l) Debye orbital without resummation  
( ( ) 1r   ). 

 Then, introducing nninto dnnl (r) altogether 
with 0 ( )nd r  makes to appear   
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with the obvious extension 
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of the classical polarisation. Finally, one reaches 
 

 
0

0,

2 4
2

0 ( ) (2 1) ( )
3

nl

l

E
n nl

n n

e rd r C l e R r dr  



  ,     (31) 

 

where 
3/ 22 22

2
le

e B

nC e
m k T

 
  

 

  

 
Assigning a function Eno(r) to every 0 ( )n r , so 

that 0
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obvious quantum – mechanical extension of Eq. 
(23), pictured on Figure 4, where level 3p 
experiences inner screening from It is very 
important to notice the nearly ynl(r) constant 
behavior, in particular at large r/a0 value. Also, the 
Debye ionization limit does not get shifted by the 
present renormalization. Levels (n, l) are likely to 
experience larger blue shift than lower ones, with 
respect to the unperturbed Debye value ( ( ) 1v  ).  

 
5 Dependence 
 
Enlarging the above exploration to a Z- 

dependent (see Figure 5) scanning unravels global 
trends encapsulated in Eq.(32). 
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Figure 4 – Normalized solutions to quantum – mechanical Eq. (32) for partially ionized hydrogen. 3S.  

This latter being in turn inner-screened from 2P and so on,  
in a hot/dense and partically ionized hydrogen plasma. 

 
 

 

 
 

Figure 5 – Asymptotic renormalisation factor yn, n-1(∞) in terms  
of ion charge Z hydrogenic main quantum number n for (a) n=2, (b) n=3,  

(c) n=4 and (d) n=5 with D in ao/Z in hot/dense plasmas with ne=1023 cm-3 
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Table 2 – Asymptotic renormalisation factor yn, n-1(∞) for the Debye potential in terms of main quantum number n and ion echarge z ≤ 
6 in hot / dense plamas with ne=1023 cm-3 and Debye length D (a0/z). Missing entries qualify continuum states  
 

(a) Z=1 H 
yn, n-1(∞) n=2 n=3 n=4 n=5 T (eV)

D=4 0.999 0.983  51.34
D=5 0.999 0.988  80.234
D=7 0.999 0.998  157.242
D=10 0.999 0.999 0.998  320.9363
D=15 0.999 0.999 0.999 0.997 722.134

 
(b) Z=2 He 

yn, n-1(∞) n=2 n=3 n=4 n=5 T (eV)
D=4 0.997 0.927  60.91
D=5 0.999 0.960  95.18
D=7 0.999 0.996  186.55
D=10 0.999 0.999 0.994  320.704
D=15 0.999 0.999 0.999 0.993 855.72

 
(c) Z=3 Li 

yn, n-1(∞) n=2 n=3 n=4 n=5 T (eV)
D=4 0.950 0.600  36.1
D=5 0.995 0.882  56.40
D=7 0.999 0.992  110.55
D=10 0.999 0.999 0.989  225.60
D=15 0.999 0.999 0.998 0.998 507.61

 
(d) Z=4 Be 

yn, n-1(∞) n=2 n=3 n=4 n=5 T (eV)
D=4 0.049  25.38
D=5 0.844   36.66
D=7 0.998 0.981  77.73
D=10 0.999 0.998 0.982  158.63
D=15 0.999 0.999 0.998 0.982 356.91

 
(e) Z=5 B 

yn, n-1(∞) n=2 n=3 n=4 n=5 T (eV)
D=4 0.00  19.49
D=5 0.011  30.46
D=7 0.958 0.906  59.69
D=10 0.999 0.997 0.969  121.83
D=15 0.999 0.998 0.997 0.974 274.107

 
(f) Z=6 C 

yn, n-1(∞) n=2 n=3 n=4 n=5 T (eV)
D=4  15.79
D=5  24.6735
D=7 0.168  48.36
D=10 0.996 0.990 0.907  98.70
D=15 0.999 0.999 0.996 0.953 222.08
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Now we can contemplate the overall nearly 
constant and plateau-like behavior of the 
renormalisation factor (RF) y n,l (r). 

yn, n-1(∞) data pertaining to the highest n-
dependent RF are systematized in Figures 5 and 
Table 2. for a varying ion charge Z≤6 in hot/dense 
plasmas with ne=1023 cm-3.  

Corresponding temperature data T(eV) are sorted 
according to D values in a0/Z. The larger n, the 
larger yn, n-1(∞), thus featuring a stabilized dielectric 
function ( )nl r  at large distance r. This trend gets 
amplied for decreasing D values, advocating a larger 
wave function delocalisation. It grows nonlinearly 
with increasing Z (Figures 5 a, b).  

Small RF data correspond to levels deeply 
involved in the bound-free transition, close to 
vanishing in the continuum.  

Highly excited bound states n=4,5 survive only 
with D=10,15 in a0/Z, thus vindicating a rather 
weak renormalisation eect only (Figures 5 c, d ). 

The dipole density vanishes at 𝑟𝑟 � �, so yn, 
l(0)=1 and y‘

n, l(r)→0 at 𝑟𝑟 𝑟 𝑟 
It should also be appreciated that it proves rather 

dicult to pursue the present line of reasoning beyond 
Z=6 and D≤15 a0/Z, because pertaining plasma 
parameter e  turns �� �. 

So, the Saha level distribution loses 
progressively its meaning while yn, n-1(r)→0 too 
rapidly. Moreover increasing Z without bound 
makes the wave function more and more hydrogenic 
[20 – 21], so that it exhibits less and less 
delocalisation. 

 
6 Blue line shift 
 
The presently considered renormalisation 

process makes to appear a more global perspective 
when one focusses on wavelength relative shift – 


  in terms of ion charge Z and electron plasma 

parameter 
2

e
e

e
D


  . 

Required parameters investigation makes use of 
Schroedinger eigenquantities derived from [18] and 
[19] codes conveniently initialized with analutic 
eigenquantities pertaining to modied Hulthen 
potential [16],  

2( 1)( )
1 2 1

r
r

r r

Z e l lV v e
e e




 

 


 

        
, 

1
D

   in 0a
Z

                         (33) 

 

 

 
Figure 6 – Relative wavelength shifts relative to the Debye one ( ( ) 1r  )  

for various conditions as function of Z and e . (a) Ly  and D=5a0/Z;  
(b) L𝑦𝑦� and D=10a0/Z; (c) Ly  and D=10a0/Z. 
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Blue relative shifts � ���� are obtained with 
respect to the unperturbed Debye ones ( ( ) 1v  ). 
They are signicantly larger than those seen in 
weakly coupled plasmas ( 0.1e  ) [22] which result 
from distinct temperature – dependent mechanisms. 

Presently considered Ly  and Ly𝛽𝛽 shift 
increase with Z and e , in the hydrogenic 
sequence. The optimium e  value for which the 
last bound state disappears into the continuum, 
remains below unity. These are negative shifts with 
respect to the overall Debye red shift. Such a trend 
increasing steadily with Z and e , thus provides 
reduction of the usual Debye shift, recognized as 
oversized. 

 
7 Conclusions 
 
Focussing attention on strongly ionized, 

hydrogenic hot/dense plasmas and triggered by the 
observation that radial wave function of Debye 
bound states experience a marked delocalisation 

process in the vicinity of bound – free transitions we 
have elaborated a systematic iterative embedding of 
electron – ion orbitals increasingly excited. We have 
been led to develop a 3D quantum – mechanical 
extension of an analogous classical process initiated 
in low dimensional condensed matter physics [7-
10]. 

The key quantity featuring the conspicious 
embedding process is the renormalisation factor 
y,n(r), inverse of the orbitals dielectric function, 
qualifying local electric dipoles. Corresponding 
charge Z dependence is shown as strongly nonlinear, 
for Z≤6. A salient by – product of this investigation 
advocates a signicant reduction of the usual real line 
shift typical of the Debye potential and usually 
considered as too large. Up to now, we restricted 
attention to moderatly correlated and dense plasmas 
with electrons taken classical. It then remain to pay 
a due attention to more strongly coupled hydrogenic 
plasmas neutralized by a partially degenerate 
electron fluid. 
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