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In order to solve many-body states in a wide energy region including continuum states, it is strongly desired 
to develop a useful method. In nuclear cluster systems [1, 2,], we must treat both bound and unbound states 
simultaneously. For such calculations, we propose to apply symplectic coherent-state bases (SCSB). In this 
report, the basic idea of the SCSB method will be explained. Especially the Pauli exclusion principle plays 
an important role in nuclear systems [3, 4], and the orthogonality condition model (OSM) [5] has been 
studied successfully for various kinds of nuclear cluster systems. We here discuss an application of the 
SCSB to the OCM. The SCSB method can be easily applied to two-cluster systems. However, for multi-
cluster systems, the applicability of the SCSB is not self-evident. The multi-cluster system is described by 
the Pauli-allowed states (PAS) [6] under the Pauli exclusion principle. In this report, the multi-cluster SCSB 
will be discussed on the basis of the PAS of the multi-cluster systems. 
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1 Introduction 
 
To obtain information on bound and resonance 

states in two-cluster and multi-cluster nuclear 
structures, it is necessary to calculate the 
Schrödinger equation. In addition, a prerequisite for 
obtaining a result that is closest to reality is taking 
into account the Pauli principle, which leads to a 
complication of the solution for the total wave 
function of the nuclear system. This equation, like 
the Schrödinger equation, is solved within the 
orthogonality condition model. However, using the 
method of symplectic coherent-state bases, could 
simplify the process of calculating this problem. 
The method of symplectic coherent-state bases has 
a number of features that, within the framework of 
the orthogonality condition model, would allow 
simultaneous calculations for both bound and 
resonant states. Another interesting question is the 
applicability of this method to solving multi-cluster 
nuclear systems. The multi-cluster system is 
described by the Pauli-allowed states (PAS) for the 

relative motion of clusters under the Pauli exclusion 
principle for nucleons constituting clusters [7, 8, 9, 
10]. We discuss the multi-cluster SCSB on the basis 
of the PAS of the multicluster systems [11]. 

In the next section, we will briefly explain the 
coherent states [12, 13, 14], and propose the 
symplectic coherent-state bases. In Sec. 3, the 
applications of the symplectic coherent-state bases 
are discussed for two-body and many-body cluster 
systems [15]. Finally, summary is given in Sec. 4. 

 
2  Symplectic coherent-state bases (SCSB) 
 
2.1 What is a coherent state 
The coherent state was first proposed by 

Schrodinger in 1926 [16], and has been widely used 
in quantum physics so far. The characteristic of the 
coherent state is in description of a classical property 
of the quantum oscillation. 

Let's start with a one-dimensional Harmonic 
Oscillator (HO) system, which is described by the 
Hamiltonian 
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H = �� �𝑝𝑝�� � 𝑥𝑥�� = �� �𝑎𝑎�𝑎𝑎 � 𝑎𝑎𝑎𝑎��,        (1) 
 

where 
 

𝑎𝑎� = �
√� �𝑥𝑥 � �

���, 𝑎𝑎 = �
√� �𝑥𝑥 � �

���.         (2)  
 

These creation and anniheration operators satisfy 
the following canonical commutation relation 
(CCR): 

 
�𝑎𝑎𝑎 𝑎𝑎�� = 1, �𝑎𝑎𝑎 𝑎� = 0, �𝑎𝑎�𝑎 𝑎� = 0,        (3) 

 
Here, we introduce three types of definitions of 

the coherent state. 
 
(I) Geometrical definition 
For a state (x), the state displaced by c from x is 

expressed as 
 

 
𝜓𝜓�𝑥𝑥 � 𝑐𝑐� �  ∑ �����

�𝑛
����

��
���  𝜓𝜓�𝑥𝑥�𝑎 = exp��𝑐𝑐 �

���  𝜓𝜓�𝑥𝑥�,  𝑒𝑒
�

√�� �����𝜓𝜓�𝑥𝑥�.                       (4) 
 
 

Here, 𝑐𝑐 √2⁄  is replaced by a new complex 
valuable z, and we present a generalized 
displacement operator as  

 
D = 𝑧𝑧∗𝑎𝑎� � za.                       (5) 

 
Thus, we have a definition of the coherent state 
 

|𝑧𝑧 ⟩I � 𝑒𝑒�|0 ⟩,                                     (6) 
 

where |0 ⟩ is a vacuum state defined by 𝑎𝑎|0 ⟩ = 0 for 
the HO operator a. 

 
(II) Generating function 
In the second definition of the coherent state 

using the generating function, we have 
 

|𝑧𝑧 ⟩��  � 𝑒𝑒�∗��|0 ⟩ � � �𝑧𝑧∗��

√𝑛𝑛𝑛
�

���
|𝑛𝑛 ⟩𝑎           ��� 

 
Where |𝑛𝑛 ⟩ is a HO state of |𝑛𝑛 ⟩ � �

√� 𝑎𝑎�|𝑛𝑛 � 𝑎⟩. The 
overlap is given as 

⟨ 𝑧𝑧�|𝑧𝑧 ⟩ � 𝑒𝑒���∗ 𝑎                         (8) 
 

and, in general, the coherent states are overcomplete. 
The unitary operator is also given by 

 

𝑎 � 𝑎
𝜋𝜋 � 𝑑𝑑�𝑧𝑧𝑒𝑒���∗|𝑧𝑧 ⟩⟨ 𝑧𝑧|.                ��� 

 

 A state vector |𝜓𝜓 ⟩ can be expressed in the z-
space function realization; 

 
⟨ 𝑧𝑧|𝜓𝜓 ⟩ � 𝜓𝜓�𝑧𝑧�.                     (10) 

 
This z-space is called as the Bargmann space 

[17], and 
 

𝜓𝜓�𝑧𝑧� � � 𝑧𝑧�

√𝑛𝑛𝑛 𝑐𝑐�𝑎
�

���
                    �𝑎𝑎� 

 
where cn = ⟨ 𝑛𝑛|𝜓𝜓 ⟩. The relation between the functions 
in real (x) and Bargmann (z) spaces is given by the 
Bargmann transformation 

 
𝜓𝜓�𝑧𝑧� � � 𝑑𝑑𝑥𝑥𝐴𝐴�𝑥𝑥𝑎 𝑧𝑧�𝜓𝜓�𝑥𝑥�𝑎              �𝑎2� 

where 
 

𝐴𝐴�𝑥𝑥𝑎 𝑧𝑧� � 𝑎
π� �� 𝑒𝑒𝑥𝑥𝑝𝑝 �� 𝑎

2 𝑥𝑥� � √2𝑥𝑥𝑧𝑧 � 𝑎
2 𝑧𝑧�� . �𝑎�� 

 
(III) An eigenstate of the operator a an eigenstate 

of the non-hermitian operator a (𝑎𝑎� � 𝑎𝑎) has the 
eigenvalue of a complex number: 

 
a|𝑧𝑧 ⟩III = 𝑧𝑧∗|𝑧𝑧 ⟩III .                   (14) 

 
The equivalence between this and the second 

definitions is shown as 
 

 

𝑎𝑎|𝑧𝑧 ⟩��  �  𝑎𝑎 � �𝑧𝑧∗��

√𝑛𝑛𝑛
�

���
|𝑛𝑛 ⟩ � � �𝑧𝑧∗��

��𝑛𝑛 � 𝑎�𝑛
�

���
|𝑛𝑛 � 𝑎 ⟩ � 

� 𝑧𝑧∗ � �𝑧𝑧∗������

��𝑛𝑛 � 𝑎�𝑛
�

���
|𝑛𝑛 � 𝑎⟩ � 𝑧𝑧∗ � �𝑧𝑧∗��

√𝑛𝑛𝑛
�

���
|𝑛𝑛 ⟩ � 𝑧𝑧∗|𝑧𝑧 ⟩��                                      �𝑎�� 



45

K. Kato et al.                                                                                           Phys. Sci. Technol., Vol. 7 (No. 1-2), 2020: 43-47

2.2 Generalised coherent state 
The generalised coherent state is proposed by 

Perelomv [18]. For an arbitrary Lie group G, we 
express its unitary irreducible representation of 𝑔𝑔 = 
G in the Hilbert space H as U(𝑔𝑔). The generalised 
coherent states �𝜓𝜓� � is defined by 

 
�𝜓𝜓� � � ��𝑔𝑔�|𝜓𝜓� ⟩,                  �1�� 

  
where |𝜓𝜓� ⟩ is a fixed vector in the Hilbert space H. 

 
2.3 Symplectic coherent state 
Let us consider the three-dimensional HO 

system, in which creation and annihilation operators 
are expressed by 𝒂𝒂� and a. Using the operator 

 
𝐷𝐷� = 𝒂𝒂�𝒂𝒂�,                      (17) 

 
we introduce a coherent state based on the above 
type II definition as 

 

exp�𝛽𝛽𝐷𝐷��|𝑁𝑁𝑁𝑁𝑁 ⟩ � � 1
√𝑘𝑘𝑘 𝛽𝛽�

�

���
�𝐷𝐷���|𝑁𝑁𝑁𝑁𝑁 ⟩, �1�� 

 
where |𝑁𝑁𝑁𝑁𝑁 ⟩ is the three-dimensional HO wave 
function with the total oscillator quanta N, orbital 
angular momenta ℓ and the oscillator constant 𝑁𝑁. 

 The three-dimensional HO wave function [19] 
can be expressed by using creation operators as 

 
|𝑁𝑁𝑁𝑁𝑁 ⟩ � 𝐴𝐴�𝑁�𝒂𝒂�𝒂𝒂���𝒴𝒴𝑁��𝒂𝒂��|0 ⟩,       �1�� 

where 

𝐴𝐴�𝑁 � ��1��� 4𝜋𝜋
�2� � 2� � 1�𝑘𝑘 �2��𝑘𝑘 ,      �20� 

 
𝒴𝒴𝑁��𝑥𝑥� � 𝑥𝑥𝑁𝑌𝑌𝑁��𝑥𝑥��|0 ⟩,                �21� 

 
and 𝑁𝑁 = 2n + ℓ. Thus, the coordinate representation 
of the coherent state can be written as 

 
 

|𝛽𝛽𝛽 𝑁𝑁𝑁𝛽𝛽 ⟩ ≡ exp ��
� 𝐷𝐷�� |𝑁𝑁𝑁𝑁𝑁 ⟩ � � �

�����
���

� exp � ��
��� 𝑟𝑟�� �𝑁𝑁𝑁 �

��� �.                            �22) 
 
 
 
3 Application for cluster models 
 
In a two-cluster system, the relative motion 

between clusters is described by the Hamiltonian 
 

H = T + V(r),                          (23) 
 

and the Schrodinger equation is given as 
 

HΦ� = 𝐸𝐸�Φ�.                       (24) 
 

Using the symplectic coherent states |𝛽𝛽𝛽 𝑁𝑁𝑁𝛽𝛽 ⟩ 
as basis functions; 

 

Φ� � � ���𝜙𝜙�𝑁
����

����

���
�𝑟𝑟�,              �2�� 

 
where 

 
𝜙𝜙�𝑁

�����𝑟𝑟� � |𝛽𝛽�𝛽 𝑁𝑁�𝑁𝑁𝑁� ⟩,              �2�� 
 

we can solve the eigenvalue problem of the 
Schrodinger equation. 

When we chose 𝑁𝑁� = ℓ for the fixed state 
|𝑁𝑁�𝑁𝑁𝑁� ⟩, the symplectic coherent states are written 
as 

 

𝜙𝜙�𝑁
�����𝑟𝑟� � ��1 � 𝛽𝛽���

𝑁��
� � exp �𝛽𝛽�

2 𝐷𝐷�� |�𝑁𝑁� �� 𝑁�𝑁𝑁𝑁� ⟩.                                 �2�� 

 
 
Here, we put 

𝛽𝛽� � �𝛾𝛾����� � 1
�𝛾𝛾����� � 1 , 𝑁𝑁� � 1

𝑏𝑏��
,          �2�� 

then the symplectic coherent states are 
 

𝜙𝜙�𝑁
�����𝑟𝑟� � 𝜙𝜙�𝑁� �𝑟𝑟�𝑌𝑌𝑁���̂�𝑟�,            �2�� 

where 

𝜙𝜙�𝑁� �𝑟𝑟� � 𝑁𝑁�𝑁𝑟𝑟𝑁𝑒𝑒�����, 𝑁𝑁� � � �
��������.     (30) 
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This is the Gaussian basis states which have 
widely been used as basis functions to solve the 
Schrodinger equation. 

 
When we chose |𝑁𝑁�ℓ𝜈𝜈� ⟩ for the fixed state, the 

symplectic coherent states |𝛽𝛽�; 𝑁𝑁�ℓ𝜈𝜈� ⟩ satisfy 
 

⟨𝑁𝑁ℓ𝜈𝜈�|𝛽𝛽�; 𝑁𝑁�ℓ𝜈𝜈� ⟩ � � for N � 𝑁𝑁�,         (31) 
 

because |𝛽𝛽�; 𝑁𝑁�ℓ𝜈𝜈� ⟩ includes the HO states of 𝑁𝑁� �
𝑁𝑁�. This means that the symplectic coherent states 
|𝛽𝛽�; 𝑁𝑁�ℓ𝜈𝜈� ⟩ describe the Pauli allowed states 
orthogonal to the Pauli forbidden states |𝑁𝑁�ℓ𝜈𝜈� ⟩ 
where 𝑁𝑁� � 𝑁𝑁�. 

For the multi-cluster system, the antisymmetrized 
wave function is given by 

 
Ѱ = A�𝜑𝜑�𝜑𝜑� … 𝜑𝜑�Φ�𝑟𝑟�, 𝑟𝑟�, … , 𝑟𝑟�����,       (32) 

 
Where 𝜑𝜑� (k = 1, … , n) and Φ�𝑟𝑟�, 𝑟𝑟�, … , 𝑟𝑟���� 

are internal and relative wave functions of clusters, 
respectively. The orthogonality condition model 
(OCM) is also given as 

 
𝐻𝐻���Φ = 𝐸𝐸Φ, with ⟨ Φ|Φ� ⟩ = 0,        (33) 

 
where ɸ� are the Pauli forbidden states defined by 

 
A�𝜑𝜑�𝜑𝜑� … 𝜑𝜑�Φ�� = 0.                (34) 

 
The Pauli allowed states Φ� are defined by 

⟨ Φ�|Φ� ⟩ = 0as well. 
 The Pauli-allowed symplectic coherent states 

can be constructed by using the operator 
 

𝐷𝐷� � � 𝒂𝒂�
�

�

���
𝒂𝒂�

� � 𝒂𝒂�
� 𝒂𝒂�

� ,             �3�� 

 
where the last term is due to degree of freedom of the 
center of mass. The fixed states are chosen to be the 
lowest Pauli allowed states, which have been 
discussed in Ref. [2]. 

The symplectic coherent states are closely 
connected with the complex scaling method in which 
continuum states can be described satisfactorily 
within the square-integrable functions [20, 21]. The 
complex scaling [22] is defined by 

𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟��, Φ��� 𝑟 𝑟𝑟�����Φ��𝑟𝑟���.         (36) 
 
This transformation is a kind of dilation, which is 
 

Φ�𝑟𝑟� = exp (�𝛼𝛼𝑟𝑟 ∙ 𝜕𝜕)Φ�𝑟𝑟�,            (37) 
 

where 
 

𝑟𝑟 ∙ 𝜕𝜕 � � 1
2 𝒂𝒂�𝒂𝒂� � 1

2 𝒂𝒂𝒂𝒂 � 3
2 𝑁𝑁�           �3�� 

 
Therefore, for the lowest Pauli allowed state 

|𝑁𝑁�ℓ𝜈𝜈� ⟩, we have 
 

�����𝛼𝛼𝑟𝑟 ∙ 𝜕𝜕� |𝑁𝑁�ℓ𝜈𝜈� ⟩ �
� ��� �1

2 𝒂𝒂�𝒂𝒂� � 3
2 𝑁𝑁� |𝑁𝑁�ℓ𝜈𝜈� ⟩ �

� ��� �3
2 𝛼𝛼𝑁𝑁�� |𝛼𝛼; 𝑁𝑁�ℓ𝜈𝜈� ⟩  

�3��

 
Thus we can see that the complex scaling is also 

a symplectic coherent state of dilation with a complex 
number parameter. 

 
4 Conclusions  
 
Many states observed around the threshold 

energies in light nuclei have been studied to have 
characteristic cluster structures [23]. In this report, a 
promising method using the symplectic coherent-
state bases (SCSB) has been discussed to describe 
those states, which are weakly bound and resonant 
states. The SCSB method can be easily applied to 
two-cluster systems. However, for multicluster 
systems, the applicability of the SCSB is not self-
evident. The multi cluster system is described by the 
Pauli-allowed states (PAS) [6] for the relative motion 
of clusters under the Pauli exclusion principle for 
nucleons constituting clusters. We explained the 
symplectic coherent sates based on the lowest Pauli 
allowed states in twobody system. Using the 
symplectic coherent sates as basis states, we 
proposed to solve the OCM equation. For this, the 
Schrödinger equation describing the states and 
relative motion of two cluster systems was 
considered in detail. We also discussed that this idea 
can be extended to the multi-cluster OCM problem. 
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