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Model of 9Be nucleus as "quasi-molecular"  
state of “n+a+a” system 
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The 9Be nuclide has been considered as a system of two alpha-particles and one neutron and it has been 
shown that such system can exist in "quasi-molecular" state, when the wave number of a pair of heavy particles 
becomes imaginary q=ik with the wave number of the light particle being a real quantity. That is, rescattering 
of light particles on the two heavy particles creates additional attraction between the heavy particles and 
"binds" this heavy pair. The total energy of the system becomes negative: 2 2 0E p m q M   , m is the mass 
of the light particle, and M is the mass of the heavy particle. Since k = k (p), the total energy of the system E(p) has a minimum for the variable  p. The estimates were obtained in the Born-Oppenheimer approximation, 
where the choice of the pair potentials in separable form allows to solve the three body problem in a simple and 
compact form. 
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1 Introduction 

Study and theoretical description of the 9Be nuc-
leus properties still remains one of the urgent prob-
lems in nuclear physics [1,2]. Such interest is condi-
tioned by specific properties of this nucleus and its 
promising use as an effective neutron reflector. (Be-
9 stands right after the first unstable nuclei with 
atomic number A = 8). Its reflection capability has 
pre-determined its widespread use in nuclear engi-
neering [3,4]. 

It is known that the light nuclei are good neu-
tron moderators and some of them are good neutron 
reflectors. Reflectors of thermal and intermediate 
neutrons are usually made from a substance of 
moderators used in nuclear reactors [3,4]. In heavy 
water reactors graphite is used as a reflector due to 
its availability and good diffusion properties. In 
light water reactors there is always a layer of water 
(10 cm or more) as a moderator between active 
zone and shell of the reactor. This layer is already a 
reflector and reduces the active zone size.  

Intermediate reactor contains some moderator 
and neutrons absorbed by substance before becom-
ing heat. The best reflector for neutrons is beryl-
lium. Also, beryllium is the best moderator for in-
termediate reactors of small critical dimensions, i.e. 
for the reactors with high concentration of fissile 
material in the active zone. Ordinary water is infe-

rior to beryllium because at energies above 0.1 
MeV fast neutrons pass through water easier, than 
through beryllium [3,4]. Obviously, the reflective 
properties of beryllium material are directly related 
to its crystalline structure.  

Very often the Be9 nuclide is considered as a 
system of three particles, i.e. as “n+α+α” system 
that exists in a form of bound state. And usually the 
system is analyzed in area of discrete spectrum of 
pair subsystems. On this way there are some diffi-
culties, where the main problem is the heavy re-
liance on the parameters of the alpha-alpha potential 
which has a deep hole at small distances [5]. Oppo-
site, na-potentials does not give any bound states. It 
means that only the process of rescattering of neu-
tron on two alpha particles can lead to appearance 
of bound states in the three-body system.           

Here the 9Be nuclide has been considered also 
as the system of two alpha-particles and one neu-
tron. However, it has been shown that such system 
can exist in "quasi-molecular" state, when the wave 
number of a pair of heavy particles becomes imagi-
nary q i  with the wave number of the light par-
ticle being a real quantity. That is, rescattering of 
light particles on the two heavy particles creates 
additional attraction between the heavy particles 
and "binds" this heavy pair. The total energy of the 
system becomes negative: 2 2 0E p m q M   , m  
is the mass of the light particle, and M is the mass 
of the heavy particle. Since k = k (p), the total ener-
gy of the system  E(p) has a minimum for the varia-
ble p. This model has been considered in the Born-
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Oppenheimer approximation, where the choice of 
the pair potentials in separable form allows to solve 
the three body problem in a simple and compact 
form.  

It is shown that the additional attraction be-
tween alpha particles increases their usual pair 
interaction and, therefore, shifts the correspond-
ing pole of the t-matrix from the resonance region 
to the area of bound states. Interaction of an addi-
tional external neutron with such three-body sys-
tem could lead to displacement in the energy of 
the primary neutron along the curve E(p) from the 
minimum point. If the strength of such distur-
bance is small for the dissociation of the three-
body system, the primary neutron returns to the 
minimum point, throwing back the external neu-
tron acting as an elastic wall. As we assume, this 
is how the reflection effect of neutrons works for 
the case of beryllium nucleus. 
 
2 Three body model of the nucleus 9Be  

Let we analyze and calculate for a system con-
sisting of two alpha particles and one neutron. Ma-
thematically rigorous solution of the three-body 
problem was given by L.D. Faddeev [6]. The sys-
tem of Faddeev equations for T-matrix elements can 
be written as: 

 0( ) ( ) ( ) ; , 1,2,3ij i ij i lj
l i

T Z t t G Z T Z i j


     (1) 

where ti = Vi + ViG0ti, Vi are the pair interaction 
potentials, and  ti corresponding pair t-matrices. In-
dices i, j denote the number of the pairs, G0 is a 
Green function for three free particles. The total T-
matrix corresponds to the sum ijT T . 

To solve the task one needs to determine the 
pair t-matrices ti, i.e. there is no need to deal with 
complex pair interaction potentials for the particles; 
this makes our analysis task easier. Within the con-
sidered model we would first consider the main pe-
culiarities of the pair amplitudes at low energies. 
Such peculiarities are their resonances: for ,  -
subsystem this is a very narrow resonance in S-
wave at , 91.6RE keV   and width 6 eV   [5], 
and for (α+n) – subsystem – a resonance in P-wave 
at 0.9RE MeV  and width 0.6MeV   [7]. 

Let us determine the pair t-matrixes that can 
generate such resonances. This can be done using 
simple separable potentials ( ) ( ')i i i iV q q    

  , 
where i  – is the coupling constant. Then 

( ) ( ) ( ')i i i it q E q    
  , where 
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2 / 2s iE q  ,  - reduced mass in the i-
subsystem, 2

0 / 2iE q  . The condition 1 0i
   de-

termines location of pole for the pair scattering am-
plitude in the complex energy plane and, correspon-
dingly, complex wave numbers.  

For the ,  -subsystem we choose 
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where / St q  . The norm constant 2N 

32 / (2 )S    corresponds to the normalization 
( 0) 1I E   , so that 3

0 0 0( ) ( ) (1 3 ) (1 )SI E I q i t it    . 
Dimensionless coupling constant 1S    , 

105.78*10   and the parameter 3 16.77 10S fm    
correspond to the experimentally obtained reson-
ance characteristics [6]. One should note that reson-
ance in the  -subsystem satisfies the condition: 

3 3 2 0S Sx x    , where 01x i t   .  
For the (α+n) – subsystem the potential form-

factor can be written as ( ) ( )i Pp p  
 

2 1 ˆ(1 ) ( )n LMN t t Y p
 

 , where / Pt p  . So, we get 
2

0 0 0( ) ( ) (1 2 ) (1 )PI E I p i t it    , where 0 0 / Pt p  . 
The condition 1 0P

   brings us to 
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 (3) 

Introducing 0 R It t it   we get for the case of re-
sonance conditions (1 )P It    and 2 (1 )R I It t t   . 
As it should be, two poles symmetrical with respect 
to an imaginary axis (1 )R I It t t     correspond to 
the quasi-stationary state with energy E=ER–i Г/2. 
For the (α+n) – resonance with energy 

0.9RE MeV  and width Г=0.6MeV we get: 
0.17Rt   , 0.03It   , 0.97P   , 11.25P fm  . 

 
3 Solution for the three interacting particles. 

Separating in (1) the connected term ijP  of am-
plitude with the relation ij i ijT t     

| |i i ij j jP       one can get the system of equa-
tions  ij ij il l lj

l
P P    . Here ij   

0| ( ) | ,i jG Z   i j . Then, it follows for the 
elastic channel (i->i) [8]: 
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V I l k i           , (5)  

The equations (4) and (5) represent a closed sys-
tem of equations and are basic for the effective po-
tential method in the three-body problem. Moreo-
ver, employing the limit / 0m M   , where m  - 
mass of a light particle, M – mass of a heavy par-
ticle, simplifies determination of the solutions. It is 
important that all polar peculiarities of the pair scat-
tering amplitudes are preserved. If we accept the 
solution obtained within such approximation as a 
basic one, then corrections to it can be made based 
on conventional perturbation theory. The method is 
described in details in [8-10]. Below we present the 
simplified solution of the task. 

The calculations show that the 9Be ground state 
energy depends mainly on the pair resonance para-
meters and less depends on interactions in the non-
resonant regions. The considered above (n+α)-
resonance provides us with the value for bound 
energy of the (α+α+n)-system: E = - 1.285 MeV. 
The experimentally determined value is E = - 1.665 
MeV [7]. Still, the additional (n+α) resonance with 
energy ER = 4.6 MeV and width Γ = 4 MeV [7] am-
plifies the bound energy up to E= - 1.775 MeV. But 
at the following parameters of this resonance ER = 
2.0 MeV, and Γ = 5.0 MeV [11], total bound energy 
is even higher: E = - 2.366 MeV. 
 
4 Conclusions 

Considered above configuration of the system 
of three particles is, quite possibly, not typical for 
bound nuclear systems, but it fits the general scat-
tering theory for three particles. One can say that 
(α+α+n)-system represents a “quasi-molecular” 
state where the wave number of a pair of heavy par-

ticles becomes imaginary ,  and the wave 
number of a light particle  remains real. This hap-
pens because multiple scattering of a light particle 
at two heavy ones creates additional attraction be-
tween these particles which “couples” these heavy 
particles. Non-linear dependence deter-
mines the coupling strength of heavy particles as a 
function of the light particle wave number. Total 
energy of the system  becomes 
negative only at certain range of p values and shows 
a minimum over this variable (see Fig.1). Such state 
is known in the scattering theory of few particles as 
a bound state of a subsystem recessed within a con-
tinuous spectrum of an adjacent subsystem. Possi-
bly, namely this state pre-determines the uniqueness 
9Be of nucleus as a neutron reflector. 

 

 
Figure 1 –  2

0/ ( )PE f t  curve. 
 
An additional external neutron scattered at such 

“flexible” coupled system can result in a shift of 
initial neutron energy along the curve E(p) away 
from the maximum point. If the disturbing force is 
low to decouple the three-particle system, the initial 
neutron returns back to the minimum point and 
kicks off the external neutron like an elastic wall. 
Moreover, Pauli Exclusion Principle can be appli-
cable here preventing overlapping of the wave func-
tions from identical neutrons what would also gen-
erate additional repulsion. 
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