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Exact solution of the fiels equation
of the generalized cosmological F(R,T) model
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We considered cosmological model within the framework of the generalized F(R,T) gravity in flat FLRW
metric. Earlier, an exponential solution was shown for the generalized case, which describes the inflationary
stage of the evolution of the Universe. In this paper, it is shown that for the particular case of the Starobinsky
model, the generalized model has, among other things, a power-law solution that describes the dust-like
stage and the stage of radiation dominance. It should be noted that this solution was obtained by the
analytical method as a solution to the Euler-Lagrange equation for this model, taking into account the
functions u, v — describing the relationship between the curvature scalar and the torsion scalar, and
depending not only on the first, but also on the second time derivative of the scale factor. This solution is
of interest, since it shows not only that this model has a solution, but also that this solution can describe the
modern observable Universe for more complex forms u, v than described earlier. This solution allows other
related cosmological parameters to be obtained accordingly. The paper presents the parameter w for the
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equation of state, which describes the stage of the evolution of the Universe.
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Introduction

Observation of the distribution of matter in the
Universe earlier led not only to the idea of the Big
Bang theory, but also to Starobinsky's model
describing the early accelerated expansion of the
Universe, as a consequence, leading to the observed
homogeneity of the Universe [6]. Later, these
assumptions were confirmed by many independent
studies [7-10], but the reason leading to this model
has not yet been determined. We have previously
assumed that one of the reasons may be the symmetry
of the generalized model [11]. However, here you can
face the problem that generalized cosmological
models become too mathematically complicated, and
cannot be solved analytically.

So, already taking into account the presence of
the functions u, v — describing the connection
between the curvature scalar and the torsion scalar,
which should help to give in the limit, respectively,
the general theory of relativity or teleparallel —
gravity [12-15] is already so difficult to compute that
researchers often try to describe the solution without
taking into account these functions [16]. As a first
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approximation, it is possible to take into account
these components as functions of the scale factor and
its first time derivative. But it is important to take into
account that in fact they have more complex
dependencies u = u(l‘!fv;xi;gij,gij,g'ij, s f),v=
v(l"lfv; zi; 9ij» 9ij» Gij» - 9i)- Here, it is important for
us to understand whether the generalized
cosmological model that we are considering
satisfactorily describes the observed Universe, also
satisfies functions u, v depending not only on the
first, but also on the second time derivative of the
scale factor. This work is devoted to this study.

Model

In this work we use Friedmann—Lemaitre—
Robertson—Walker metric [1-5]
ds? = dt? — a(t)?(dx? + dy? + dz?), (D
where a(t) — scale factor. Here F(R,T) is denoted

as F.
The action for the model has the following form:
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Here - Ricci scalar, T — torsion scalar and u, v-
functions, that depend on a,a, d. Here and further
dots represent derivation with respect to the cosmic
time.

Values of 1, and 1, were obtained by varying the
action with respectto R and T':

Ay =Fg, A, = Fr. 3)

Indices of F express the derivatives over
specified variable.

Now we can write the Lagrangian in its points-
like form using the Lagrange multipliers Aq,2,,
obtained previously:

(2)

L=a3[F—(R—wFzr— (T —v)F;] +
+6aa2[FR - FT] + 6a2d[RFRR + TFRT]’

Solution

Deriving the Euler- Lagrange equation for the
scale factor a. Since in this work we take into account
second derivative of a, then the formula will have to
take the following form:

d 0L  d? oL

——=0, 5
da dtda dt?dd )
Putting Lagrangian (4) into equation (5), we
obtain the equation of motion:

a 2 .
F + AFR + BFr + <4H — ud§ + Z(iud + §a(udad + udad + udd?i)> Fr +

a . 2
+<—vd§—4H+2avd +=

3
—(2+ua§)15R +%‘%FT =0,

a(vdad + Uddd + vdd'd')> FT -

(6)

here H = %— Hubble parameter, and by A and B we mean the following expressions:

A=

22
a a a
—R +u+§ua—uad—g(udad+uddd+uad'd)+ud(27+c'i>+

_|_

wla

[a(Uiaad + Uaaad + Uaqad) + Uaad + d(Uaaad + Ugaad + Ugaad) +

tugad + G(Ugaad + Ugaad + Ugaad) + Uaad] —

—4H — 6H?,

a

B=-T+v+
VT3

(7)

a
Vg — Vaa — g(vdaa + v4d + v50) +

-2
a
+‘Ua' <2€ + a> + Zd(vdad + ‘Ua'da + ‘Ua'd'a") +

a s .. . . . e ven
+ § [d(vdaad + vdadd + vdada) + Viga@ + a(vddaa + Viaaa + Vdada) + VgagQ +

+A(VaaaQ + Vaaad + Vaaat) + vaad] +

+4H + 6H?2.

(8)

C)
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This equation cannot be solved analytically.
However, we can take F in the form of a generalized
Starobinsky model, for which F=R+R?>+T +
T2, found by us in this form earlier [16].

Suppose that the functions u =nd,v =md
linearly depend on the second derivative with respect
to a. We get the equation of motion for a new
model:

12alda(na® — 36a) — 643 + a?ad(2n — m) + d(nad? — 6a?)] =
= a’[—a’(nd — 6d)? + 24na?i(na — 6) — 180a* — m?id%a* +

+12a%a?d + d(n + m — 3642 + 2da(na — 6 + ma))].

This equation is difficult to solve explicitly. But
we have shown that its solution is satisfied by the
substitution of a scale factor with a power-law
dependence on time in the following form [17]

a= aots- (10)

Results

Hubble parameter here is = % . The equation of
state is as follows:

(11)

P = wpc?.
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The parameter o of the equation of state has the
following form:

2
w=-1+—. (12)
3s
Deceleration parameter:
= 1+ i _1 1 (13)
1= HZ) s
The slow roll parameter:
H 1
€E = — m = ; (1 5)
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Figure 1 — Form of scale factor a (left) and Hubble parameter H (right).
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Figure 2 — Time dependence of the redshift z for a power-law cosmological model (left)
and dependence of the density p (right).
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Conclusions

In this work, we considered a generalized model F
(R, T) of gravity, defined in the FLRW metric, with
functions u and v depending not only on the scale factor
and its first derivative, but also on the second one. It was
found that the solution for the scale factor of this model
could be obtained in a power-law form a = a,t*, after
taking F in the form of a generalized Starobinsky model.
This shows not only that this model not only has a
solution for the simplest cases, but also well describes the
observable Universe for more complex solutions. It is
obvious that this method can be considered on other
generalizations [18], like k-essence [19], quintessence
field models [20-21] and other dark energy scenarios.
This is important, since generalized model ultimately

gives the effect of the initial inflation of the Universe. The
result brings new opportunities for future research.
Further, we can consider studying and observing other
models or we can deal with obtaining the parameters of
the Universe for this one. In this work, we have derived
only the form of the parameter w of the equation of state
for our case. The related cosmological parameters are of
physical interest.
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