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The term ‘space weather’ refers to adverse conditions on the Sun that could affect the structures of space 
or terrestrial technology and risk human health or life. Flares produce effects that span the electromagnetic 
spectrum. During a flash, they emit x-rays and ultraviolet radiation, resulting in extremely high temperatures. 
The purpose of this work is to create a new algorithm for the identification of solar flares and active 
regions of the Sun, thus minimizing harm to spacecraft operations in orbit. An algorithm was developed 
for the automatic detection of active regions of the Sun (sunspots, solar flares), based on methods of image 
enhancement, segmentation, pattern recognition and mathematical morphology. The sun’s surface also 
displays visible sunspots located in regions of the Sun that are magnetically active and whose number is 
an indication of the Sun’s magnetic activity. In tracking and predicting solar activity, the identification and 
classification of sunspots are useful techniques. The main objective of this paper is to detect sunspots using 
images from the Solar Dynamics Observatory.
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1 Introduction

Sunspots are visible regions of the Sun’s 
photosphere that reflect its activity. The automatic 
identification of sunspots from digital images is 
complicated by their shape and variable contrast 
irregularities and intensity compared to their 
surroundings. The detection of these sunspots and 
their characteristics, such as scale, contrast and 
location on the solar disk, plays an important role 
in the prediction of space weather and in the study 
of total solar irradiance, differential rotation, solar 
convection zone modeling [1], solar radius variability 
[2-8], and other significant phenomena. For irradiance 
studies, the area measurements of sunspots are 
important [9-12]. The measurement of sunspot areas 
has been shown to rely on the method of detection 
used and on the images themselves [13-14]. Then, 
inaccurate calculation of sunspot areas is the key 
barrier to irradiance modeling [15]. The presence of 
solar differential rotation is clearly demonstrated by 
the sunspots. It is easy to see that they are traveling 

in a few days from east to west on the solar disk. 
In order to locate sunspots and generate catalogues, 
many manual or automated methods have been used. 
Automatic methods use spatial filtering that also 
affects the resolution of the image and the properties 
of the sunspot [16-17]. To analyze a small number 
of images every day, manual methods are sufficient, 
but automated methods are required to classify these 
characteristics in recent years as a large and the 
amount of high-resolution solar images have been 
obtained from ground and space.The goal of this 
paper is to identify brightest area of a retinal image 
using naive and robust methods for the identification 
of sunspots in solar images.

The goal of this paper is to identify brightest area 
of a retinal image using naive and robust methods for 
the identification of sunspots in solar images.

Monitoring of solar flares in a real time is carried 
out by the Geostationary Operational Environmental 
Satellite or GOES [8]. Data on the electrons, protons, 
and X-rays were taken from satellites GOES 13, 
GOES 14 and GOES 15 [18-19].
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On August 9, 2011, on the Sun, X class flares 
were registered. In total, 8 classes are distinguished 
in the scale of solar flares: A, B, C, M and X, each 
subsequent of which exceeds the previous power by 
10-100 times. The event, more accurately estimated 
as X6.9, occurred in the morning and observed for 
about 20 minutes with a maximum at 08:05 UT [20].

On March 7, 2012 at 00:02 UT, another eruption 
of solar flare class X5.4 was registered. The event 
occurred in the active area of 11429 and was observed 
for about 22 minutes with a maximum at 00:24 UT. 
In total, 2 solar flares class of X were registered.

On November 5, 2013, around 22:07 on World 
time there was a fairly strong release of solar matter 

into space. The solar flare is estimated as X3.3 and its 
maximum was observed at 22:12 on world time. In 
total, 1 solar flare of class X were registered.

On February 25, 2014, 4 class C solar flares 
and 1 class X solar flares were registered. In active 
area 11990 at 00:39 GMT, solar flare class of X4.9 
occurred and was observed for about 10 minutes with 
a maximum at 00:49 UT.

On September 6, 2017 at 11:53, the X class flare 
X9.3 was registered. The event occurred in the active 
area of 12673 and was observed for about 9 minutes 
with a maximum at 12:02 UT. In total, 2 flares of 
class X, 3 flares of class M and 2 flare of class C were 
registered.

Date X-ray class Active Region Start time (hhmm) End time (hhmm) Maximim time 
(hhmm)

2011/08/09

M2.5
C1.4
X6.9
C2.2
C2.4
B8.6
C2.0
C3.9

11263
11263
11263
11263
11263

11263

03:19
07:19
07:48
13:29
15:43
16:58
18:04
23:33

04:08
07:27
08:08
13:57
16:04
17:05
18:42
23:49

03:54
07:23
08:05
13:45
15:54
17:02
18:11
23:43

2012/03/07
X5.4
X1.3
C1.6

11429
11430
11429

00:02
01:05
16:19

00:40
01:23
16:26

00:24
01:14
16:22

2013/11/05

C1.6
M2.5
C3.5
C8.0
C2.5
C2.3
C2.3
C3.1
M1.0
C2.1
C6.9
X3.3

11889
11890
11885
11890

11890
11890

11890
11890

05:49
08:12
09:12
11:51
13:56
16:37
16:55
17:05
18:08
19:58
21:01
22:07

06:23
08:21
09:22
12:01
14:48
16:48
17:01
17:17
18:17
20:17
21:19
22:15

06:02
08:18
09:18
11:58
14:22
16:42
16:59
17:15
18:13
20:07
21:13
22:12

2014/02/25

X4.9
C5.0
C4.5
C5.7
C2.2

11990
11989
11986
11986
11984

00:39
04:27
06:16
15:04
23:31

01:03
04:36
06:28
15:18
23:37

00:49
04:32
06:20
15:10
23:34

2017/09/06

C1.6
C2.7
X2.2
X9.3
M2.5
M1.4
M1.2

12673
12673
12673
12673
12673
12673

06:17
07:29
08:57
11:53
15:51
19:21
23:33

06:29
07:48
09:17
12:10
16:03
19:35
23:44

06:22
07:34
09:10
12:02
15:56
19:30
23:39
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2 Determination of sunspots

Template Matching is a way for a larger 
image to scan and locate the position of a template 
image. To this end, OpenCV comes with the cv2.
matchTemplate() feature. It simply slides the image 
of the template over the input image (as in 2D 
convolution) and compares the template and the input 

image patch under the image of the template. Several 
comparison methods are implemented in OpenCV. 
This returns a grayscale image, where each pixel 
indicates how much of that pixel’s neighborhood 
matches the template. In the Figure 1 (right panel) 
shown the brightest pixel location identification in 
AIA 335 Å wavelengths obtained by using naive and 
robust methods.

Figure 1 – Detecting the brightest area of a retinal image using naive and robust methods.  
(2011/08/09, X-ray class: X6.9, AR 1263 in AIA 335 Å)

Using the cv2.minMaxLoc function without any 
pre-processing is the method of finding the brightest 
spot in an image. A single argument, which is our 
grayscale image, is needed for this purpose. This 
function then takes our grayscale image and, with 
the smallest and largest intensity values, finds the 
value of the pixel and (x, y) position, respectively. 
To break it down: minVal contains the smallest 
pixel intensity value, maxVal contains the largest 
pixel intensity value, minLoc specifies the (x, y) 
coordinates of minVal, and maxLoc specifies the (x, 
y) coordinates of maxLoc. In this application, we are 
only concerned with the pixel with the largest value, 
so we will grab that and draw a circle around the 
region and display it on. In the Figure 2 (right panel) 
shown the brightest pixel location identification in 
AIA 335 Å wavelengths obtained by using naive and 
robust methods.

The cv2.minMaxLoc function without any 
pre-processing can leave extremely susceptible to 
noise. Instead, to eliminate high frequency noise, 
it is easier first to apply a Gaussian blur to the 
image. This way, their neighbors will balance out 
even pixels that have very high values (again, due 
to noise). From our command line statement, we 
apply our Gaussian blur with the radius supplied. 

Then we will call cv2.minMaxLoc again to find 
the brightest pixel in the picture. Since we have 
applied a blurring pre-processing phase, however, 
we have averaged all pixels together with each 
other’s supplied radius. This helps us to suppress 
high frequency noise and leaves cv2.minMaxLoc 
significantly less susceptible. We can average over 
a wider neighborhood of pixels by using a larger 
radius - thus mimicking larger regions of the image. 
Additionally, we can sum over smaller regions by 
using a smaller radius. In the Figure 3 (right panel) 
shown the brightest pixel location identification in 
AIA 335 Å wavelengths obtained by using naive 
and robust methods.

Now, the naive cv2.minMaxLoc method finds 
this white pixel. The function is working correctly. It 
is indeed finding the single brightest pixel in the entire 
image. We are interested in the brightest region of the 
image, which is the optic nerve center. By utilizing a 
Gaussian blur, we are able to average a neighborhood 
of pixels within a given radius, and thus discard the 
single bright pixel and narrow in on the optic center 
region without an issue. In the Figure 4 (right panel) 
shown the brightest pixel location identification in 
AIA 335 Å wavelengths obtained by using naive and 
robust methods.
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Figure 2 – Detecting the brightest area of a retinal image using naive and robust methods.
(2012/03/07, X-ray class: X5.4, AR 1429 in AIA 335 Å)

Figure 3 – Detecting the brightest area of a retinal image using naive and robust methods.
(2013/11/05, X-ray class: X3.3, AR 1890 in AIA 335 Å)

Figure 4 – Detecting the brightest area of a retinal image using naive and robust methods.
(2014/02/25, X-ray class: X4.9, AR 1990 in AIA 335 Å)
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Obviously, a big aspect of getting the robust 
method to work correctly is properly setting your 
radius size. If the radius size is too small, we cannot 
find larger, brighter regions of the image. However, 
if we set the radius size too large, then we will detect 
too large of regions, missing out on the smaller 

ones, leading to sub-par results. Definitely spend 
some time playing with the radius size and viewing 
the results. In the Figure 5 (right panel) shown the 
brightest pixel location identification in AIA 335 
Å wavelengths obtained by using naive and robust 
methods.

Figure 5 – Detecting the brightest area of a retinal image using naive and robust methods.
(2017/09/06, X-ray class: X9.3, AR 2673 in AIA 335 Å)

3 Conclusions

In this work, we applied Gaussian blurring prior 
to finding the brightest spot in an image. By applying 
a Gaussian blur, we averaged the pixels within a given 
radius of each other together. Taking the average 
allows us to remove high frequency noise. We have 
used appropriate values for the radius of Gaussian 
blur. If we take too small of a value, we will mitigate 

the effects of the average and miss out on the larger, 
brighter regions. However, if the radius is too large, 
the small bright regions are not observable.
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