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The role of a scalar field is reexamined through the introduction of a quasi-quintessence model. Unlike 
quintessence, in the quasi-quintessence model, the pressure of the scalar field does not depend on its 
kinetic energy. This research note provides an overview of the main characteristics of this scenario and 
outlines how cosmic fluids can be constructed based on quasi-quintessence. A significant application of 
quasi-quintessence is presented, starting with a reference to Weinberg’s no-go theorem, related to the 
cosmological constant problem. By assuming the occurrence of a phase transition induced by a fourth-order 
quasi-quintessence potential and suggesting that the violation of the no-go theorem happens exclusively 
during this phase transition, it is possible to argue a mechanism for addressing the cosmological constant 
problem. This mechanism involves a form of vacuum energy cancellation, offering a potential solution to 
the long-standing cosmological constant problem. The discussion also delves into the avoidance of fine-
tuning adjustments and explores the implications of this approach in the realms of dark energy and inflation. 
Physical consequences of the quasi-quintessence scenario are presented, shedding light on its potential 
benefits and drawbacks.
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1 Introduction 
 
In the standard cosmological puzzle, the 

universe's evolution is described by a combination of 
various components, including pressureless baryonic 
matter, radiation, neutrinos, dark matter, and dark 
energy. Each of these components is represented as a 
cosmic fluid with well-defined equations of state. 

Among these components, dark energy is 
particularly intriguing as it possesses a negative 
pressure that is believed to be responsible for the 
current acceleration of the universe. However, the 
true nature of dark energy remains a mystery, and it 
is one of the outstanding challenges in modern 
cosmology. Similarly, dark matter, another enigmatic 
component, also defies direct detection and 
identification within the context of general relativity. 

In recent years, alternative cosmological models 
and theories have emerged as potential solutions to 
the puzzles posed by dark energy and dark matter [1]. 
These alternatives range from modifications of 
Einstein's theory of gravity to more complex 

equations of state or unconventional models that 
challenge the standard cosmological paradigm. These 
diverse approaches reflect the ongoing quest to 
understand the fundamental properties of the 
universe and the nature of its mysterious constituents.  

Interestingly, unified dark energy models 
represent intriguing approaches to address both the 
dark energy and dark matter by introducing a single 
cosmic fluid that exhibits different behaviors on 
various cosmological scales. Among the proposed 
unified dark energy models, the concept of a  “dark 
fluid” stands out as one of the simplest ones [2]. It is 
entirely consistent with the standard �CDM 
paradigm and can be conceptually visualized as a 
fluid with constant pressure but varying density and 
equation of state. 

To theoretically realize the dark fluid scenario, 
different strategies have been explored. For example, 
one approach involves setting the adiabatic index to 
zero for a specific barotropic fluid, while another 
approach utilizes a purely adiabatic fluid where the 
sound speed naturally becomes zero [3]. 
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While the concept of a dark fluid with constant 
pressure aligns with the standard cosmological 
model, it still leaves questions about its fundamental 
nature and microphysics.  

A promising scenario that makes use of scalar 
fields and heals the cosmological constant problem, 
is offered by quasi-quintessence. 

Quasi-quintessence has emerged as scalar field 
exhibiting pressure solely dependent on its potential, 
i.e., decoupled from kinetic energy. In this way, the 
quasi-quintessence approach differs from 
quintessence because the pressure does not depend 
on kinetic degrees of freedom and so the 
corresponding sound speed identically vanishes [4].  

In this research note, I provide an overview of 
quasi-quintessence, outlining its fundamental 
characteristics and how it can be derived from a 
Lagrangian formulation. I also discuss and compare 
previous studies related to quasi-quintessence, 
summarizing their key findings. Further, I delve into 
specific cases and scenarios associated with quasi-
quintessence, shedding light on its role in modeling 
matter-like fluids with non-zero pressure. 
Additionally, I highlight some practical applications 
of quasi-quintessence within the realms of dark 
energy and inflation, showcasing its versatility in 
addressing significant cosmological questions. 
Finally, I touch upon the connections between quasi-
quintessence and the cosmological constant problem, 
underlining its potential to offer novel insights into 
this long-standing challenge in cosmology. 

The paper is structured as follows. In Sect. II, I 
discuss how to obtain quasi-quintessence and how it 
can be obtained from different procedures. In Sect. 
III, peculiar cases of interest are reported, showing 
how quasi-quintessence mimes different fluids and 
comparing this fact with quintessence. The role of 
matter-like fluid is discussed and then in Sect. IV, I 
develop dark energy and inflation in terms of quasi-
quintessence. The connections with the cosmological 
constant problem have been summarized in Sect. V. 

 
2 Quasi-quintenssece 
 
A possible fundamental representation of quasi-

quintessence involves the Lagrangian [4] 
 
ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝜙𝜙𝜙𝜙) + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆[𝑋𝑋𝑋𝑋, 𝜈𝜈𝜈𝜈(𝜙𝜙𝜙𝜙)] − 𝑉𝑉𝑉𝑉(𝜙𝜙𝜙𝜙),   (1) 
 

where 
− 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝜙𝜙𝜙𝜙) and 𝑉𝑉𝑉𝑉(𝜙𝜙𝜙𝜙) are the usual kinetic part 

and potential respectively, with the remark that 𝐾𝐾𝐾𝐾 

depends on 𝑋𝑋𝑋𝑋 ≡ 1
2
𝑔𝑔𝑔𝑔𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼𝜙𝜙𝜙𝜙𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼𝜙𝜙𝜙𝜙 and so can be seen as 

a generalized kinetic contribution; 
− 𝜆𝜆𝜆𝜆 represents a Lagrange multiplier which 

ensures to constrain the overall universe energy and 
is associated with the non-dynamical function 𝜆𝜆𝜆𝜆. 
Manifestly, the function 𝜈𝜈𝜈𝜈(𝜙𝜙𝜙𝜙) dictates the scalar 
field’s inertial mass. 

Clearly, quintessence can be fully-described by 
setting the Lagrange multiplier to zero and allowing 
𝐾𝐾𝐾𝐾 → 𝑋𝑋𝑋𝑋. 

The energy-momentum tensor reads 
 

𝑇𝑇𝑇𝑇𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 2𝑋𝑋𝑋𝑋ℒ,𝑋𝑋𝑋𝑋𝑣𝑣𝑣𝑣𝛼𝛼𝛼𝛼𝑣𝑣𝑣𝑣𝛽𝛽𝛽𝛽 − (𝐾𝐾𝐾𝐾 − 𝑉𝑉𝑉𝑉)𝑔𝑔𝑔𝑔𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼,       (2) 
 

where we identified the thermodynamic quantities: 
 

𝜌𝜌𝜌𝜌 = 2𝑋𝑋𝑋𝑋ℒ,𝑋𝑋𝑋𝑋 − (𝐾𝐾𝐾𝐾 − 𝑉𝑉𝑉𝑉),               (3𝑎𝑎𝑎𝑎) 
 

𝑃𝑃𝑃𝑃 = 𝐾𝐾𝐾𝐾 − 𝑉𝑉𝑉𝑉,                         (3𝑏𝑏𝑏𝑏) 
 

𝑣𝑣𝑣𝑣𝛼𝛼𝛼𝛼 ≡ 𝜕𝜕𝜕𝜕𝛼𝛼𝛼𝛼𝜙𝜙𝜙𝜙/√2𝑋𝑋𝑋𝑋,                     (3𝑐𝑐𝑐𝑐) 
 

being the density, the pressure and the effective 4-
velocity, respectively. 

At this point, it seems no differences occur 
between Eqs. (3) and the quintessence case, but rather 
a simple generalization of it. 

Therefore, the Lagrange multiplier and the 
generalized kinetic term are meant to play a crucial 
role in distinguishing quasi-quintessence from 
quintessence. 

For the sake of completeness, without its 
inclusion, there is no possibility of obtaining a quasi-
quintessence field from a fundamental Lagrangian, as 
the pressure would feature a kinetic contribution. 

The main distinctions between quintessence and 
quasi-quintessence fields lie in the form of pressure 

and consequently on the sound speed, 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 ≡ �𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

. 

Specifically, the sound speed for quintessence, 
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠
𝑄𝑄𝑄𝑄, and quasi-quintessence, 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, are 
 

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠
𝑄𝑄𝑄𝑄 = 0,                             (4𝑎𝑎𝑎𝑎) 

 
𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 1,                         (4𝑏𝑏𝑏𝑏) 

 
showing that quasi-quintessence does not provide 
perturbation speed, resembling dust. This property 
will be referred to as a matter-like fluid later in the 
text. 
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A. Alternative derivations 
 
We here focus on alternative strategies to 

reproduce quasi-quintessence. While we report such 
results, we emphasize the main drawbacks in 
determining a quasi-quintessence fluid from 
alternative derivations different from Eq. (1). 

1. The first derivation consists in directly 
modifying the energy-momentum tensor. In this 
approach, there is no need for a Lagrange multiplier, 
and the modification is described by the equation [5]: 

 
𝑇𝑇𝑇𝑇𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈 → 𝑇𝑇𝑇𝑇𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈 + 𝑉𝑉𝑉𝑉(𝜙𝜙𝜙𝜙)𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈 − 𝑋𝑋𝑋𝑋𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈 .             (5) 

 
Changing the energy-momentum tensor fine 

tunes the structure of density and pressure and so this 
approach turns out to be appealing for its simplicity 
but clearly suffers from the lacking of a Lagrangian 
description. Hence, it may somehow appear 
unphysical from a fundamental viewpoint. 

2. The second approach consists in exotic 
quintessence. Here, assuming that two fluids are 
interacting, with two different equations of state, 𝑤𝑤𝑤𝑤1 
and 𝑤𝑤𝑤𝑤2, we get 3𝐻𝐻𝐻𝐻2 = 𝜌𝜌𝜌𝜌1 + 𝜌𝜌𝜌𝜌2, 𝜌𝜌𝜌𝜌1̇ + 𝜌𝜌𝜌𝜌2̇ + 3𝐻𝐻𝐻𝐻((1 +
𝑤𝑤𝑤𝑤1)𝜌𝜌𝜌𝜌1 + (1 + 𝑤𝑤𝑤𝑤2)𝜌𝜌𝜌𝜌2 = 0. If the interaction is 
modeled by a scalar field, 𝜙𝜙𝜙𝜙, we have [6] 

 
𝜙̇𝜙𝜙𝜙2 = (1 +𝑤𝑤𝑤𝑤1)𝜌𝜌𝜌𝜌1 + (1 + 𝑤𝑤𝑤𝑤2)𝜌𝜌𝜌𝜌2,             (6) 

 
with  𝜙̇𝜙𝜙𝜙2 = −2𝐻̇𝐻𝐻𝐻, whose dynamics is 
 

𝜙̈𝜙𝜙𝜙 +
3
2

(1 + 𝑤𝑤𝑤𝑤1)𝐻𝐻𝐻𝐻𝜙̇𝜙𝜙𝜙 +
𝑤𝑤𝑤𝑤1 − 𝑤𝑤𝑤𝑤2

2
𝜌𝜌𝜌𝜌2̇
𝜙̇𝜙𝜙𝜙

= 0.        (7) 

 
Direct integration leads to  𝜌𝜌𝜌𝜌2̇ + 𝐴𝐴𝐴𝐴𝜙̇𝜙𝜙𝜙𝜌𝜌𝜌𝜌2 = 0, 

where A is a constant. After cumbersome algebra, we 
find that the energy density of the second fluid can be 
associated with an exponential potential 𝜌𝜌𝜌𝜌2 =
𝜌𝜌𝜌𝜌20𝐻𝐻𝐻𝐻02𝑒𝑒𝑒𝑒−𝐴𝐴𝐴𝐴(𝜙𝜙𝜙𝜙−𝜙𝜙𝜙𝜙0) = 𝑉𝑉𝑉𝑉(𝜙𝜙𝜙𝜙),where 𝜌𝜌𝜌𝜌20 is a positive 
integration constant and 𝐻𝐻𝐻𝐻0, 𝜙𝜙𝜙𝜙0 are the present values 
of Hubble constant and scalar field, respectively. 

Hence, the density and pressure become 
 

𝜌𝜌𝜌𝜌 =
𝜙̇𝜙𝜙𝜙2

1 + 𝑤𝑤𝑤𝑤1
+
𝑤𝑤𝑤𝑤1 − 𝑤𝑤𝑤𝑤2
1 + 𝑤𝑤𝑤𝑤1

𝑉𝑉𝑉𝑉,                     (8) 

 

𝑝𝑝𝑝𝑝 = 𝑤𝑤𝑤𝑤1
𝜙̇𝜙𝜙𝜙2

1 + 𝑤𝑤𝑤𝑤1
−
𝑤𝑤𝑤𝑤1 − 𝑤𝑤𝑤𝑤2
1 + 𝑤𝑤𝑤𝑤1

𝑉𝑉𝑉𝑉,                   (9) 

 

𝜙̈𝜙𝜙𝜙 +
3
2

(1 +𝑤𝑤𝑤𝑤1)𝐻𝐻𝐻𝐻𝜙̇𝜙𝜙𝜙 +
𝑤𝑤𝑤𝑤1 − 𝑤𝑤𝑤𝑤2

2
𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉
𝑑𝑑𝑑𝑑𝜙𝜙𝜙𝜙

= 0,         (10) 

Now, including two extra fluid components, 
with energy densities 𝜌𝜌𝜌𝜌3 and 𝜌𝜌𝜌𝜌4, all the components 
of Einstein equations yield 

 
3𝐻𝐻𝐻𝐻2 = 𝜌𝜌𝜌𝜌1 + 𝜌𝜌𝜌𝜌2 + 𝜌𝜌𝜌𝜌3 + 𝜌𝜌𝜌𝜌4,               (11) 

 
𝜌𝜌𝜌𝜌1̇ + 𝜌𝜌𝜌𝜌2̇ + 3𝐻𝐻𝐻𝐻[(1 + 𝑤𝑤𝑤𝑤1)𝜌𝜌𝜌𝜌1 + (1 + 𝑤𝑤𝑤𝑤2)𝜌𝜌𝜌𝜌2] = 0, (12) 

 
𝜌𝜌𝜌𝜌3̇ + 3𝐻𝐻𝐻𝐻(1 + 𝑤𝑤𝑤𝑤3)𝜌𝜌𝜌𝜌3 = 0,              (13) 

 
𝜌𝜌𝜌𝜌4̇ + 3𝐻𝐻𝐻𝐻(1 + 𝑤𝑤𝑤𝑤4)𝜌𝜌𝜌𝜌4 = 0,              (14) 

 
Analogously to the case of two fluids, the scalar 

field here depicts the interacting term between 𝜌𝜌𝜌𝜌1 and 
𝜌𝜌𝜌𝜌2. 

The total energy density and pressure of the four-
fluid mixture, and the dynamical equation for the 
scalar field, with the arbitrary ansatz 𝑤𝑤𝑤𝑤1 = 𝑤𝑤𝑤𝑤3 = 0 
and 𝑤𝑤𝑤𝑤4 = 1/3, are 

 
𝜌𝜌𝜌𝜌 = 𝜙̇𝜙𝜙𝜙2 − 𝑤𝑤𝑤𝑤2𝜌𝜌𝜌𝜌2 + 𝜌𝜌𝜌𝜌3 + 𝜌𝜌𝜌𝜌4,           (15𝑎𝑎𝑎𝑎) 

 
𝑝𝑝𝑝𝑝 = 𝑤𝑤𝑤𝑤2𝜌𝜌𝜌𝜌2 + 𝑤𝑤𝑤𝑤3𝜌𝜌𝜌𝜌3 +𝑤𝑤𝑤𝑤4𝜌𝜌𝜌𝜌4,           (15𝑏𝑏𝑏𝑏) 

 

𝜙̈𝜙𝜙𝜙 +
3
2
𝐻𝐻𝐻𝐻𝜙̇𝜙𝜙𝜙 −

𝑤𝑤𝑤𝑤2
2

 
𝜌𝜌𝜌𝜌2̇
𝜙̇𝜙𝜙𝜙

= 0,            (15𝑐𝑐𝑐𝑐) 

 
that appear very close to the quasi-quintessence 
scenario since 𝜌𝜌𝜌𝜌2 is integrated out providing the 
dependence on 𝜙𝜙𝜙𝜙, provided that 𝜙𝜙𝜙𝜙 → 𝜙𝜙𝜙𝜙/√2 and 
−𝑤𝑤𝑤𝑤2𝜌𝜌𝜌𝜌2 → 𝑉𝑉𝑉𝑉(𝜙𝜙𝜙𝜙). 

Even though this approach is formally equivalent 
to quasi-quintessence, it fails to involve one fluid 
representation as in the case of the fundamental 
Lagrangian presented in Eq. (1). Hence, the exotic 
quintessence is not physically equivalent to quasi-
quintessence and, again, the present derivation fails 
to be predictive. 

 
3 The role of Lagrange multiplier 
 
Lagrange multipliers are a useful tool for 

incorporating constraints into complicated problem. 
Although their name may be misleading, these 
multipliers indeed carry a physical interpretation as 
well. It is essential to be cautious when adding 
constraints without considering their physical 
implications, as doing so can result in an incorrect 
solution. 

This model exhibits similarities to the concept of 
a dark fluid, which is characterized by a constant 
pressure, varying density, and equation of state. 
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So, we can summarize the following results 
 

𝑤𝑤𝑤𝑤𝑄𝑄𝑄𝑄 ≠ 0    𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠,𝑄𝑄𝑄𝑄 = 1, 
𝑤𝑤𝑤𝑤𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 ≠ 0     𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠,𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 0,                    (16) 
𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚 = 0     𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚 = 0, 

 
where pure matter, with subscript 𝑚𝑚𝑚𝑚 implies zero 
equation of state and sound speed, while the quasi-
quintessence fluid appears closer to the matter 
definition, because it does not show a stiff matter 
behavior in 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠. 

Thus, it appears evident that, 
− if 𝐾𝐾𝐾𝐾 = 0, 𝜆𝜆𝜆𝜆 ≠ 0, 𝑋𝑋𝑋𝑋 ≠ 0 and 𝑉𝑉𝑉𝑉 = 0, we 

reproduce baryons, 
− if 𝐾𝐾𝐾𝐾 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝜆𝜆𝜆𝜆 ≠ 0, 𝑋𝑋𝑋𝑋 ≠ 0 and 𝑉𝑉𝑉𝑉 ≠ 0, we 

obtain matter with pressure, or quasi-dust, 
− if 𝐾𝐾𝐾𝐾 ≡ 𝑋𝑋𝑋𝑋, 𝜆𝜆𝜆𝜆 = 0, and 𝑉𝑉𝑉𝑉 ≠ 0, we have stiff 

matter, equivalent to quintessence. 
So, the trivial solution corresponds exclusively to 

baryons under the form of dust. 
On the other hand, if 𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐾𝐾0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝜆𝜆𝜆𝜆 =

0, then ℒ𝑋𝑋𝑋𝑋 = 0, and 𝑃𝑃𝑃𝑃/𝜌𝜌𝜌𝜌 = −1 always, meaning that 
the quasi-quintessence formulation cannot be applied 
to a Lagrangian comprising only kinetic and potential 
terms. When I will discuss on how to alternatively 
derive quasi- quintessence, this argument will 
become central. 

However, if 𝐾𝐾𝐾𝐾 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝜆𝜆𝜆𝜆 ≠ 0, then ℒ𝑋𝑋𝑋𝑋 =
𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋, and in fact Eqs. (3) become 

 
𝜌𝜌𝜌𝜌 = 2𝑋𝑋𝑋𝑋ℒ,𝑋𝑋𝑋𝑋 + 𝒱𝒱𝒱𝒱(𝜙𝜙𝜙𝜙),                     (17) 

 
𝑃𝑃𝑃𝑃 = −𝒱𝒱𝒱𝒱(𝜙𝜙𝜙𝜙),                          (18) 

 
where 𝒱𝒱𝒱𝒱(𝜙𝜙𝜙𝜙) ≡ 𝑉𝑉𝑉𝑉 − 𝐾𝐾𝐾𝐾0, with ℒ𝑋𝑋𝑋𝑋 = 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋. 

Now let us consider quintessence, where by 
definition has 𝜆𝜆𝜆𝜆 = 0 and 𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 = 1, we would obtain 

 

𝑤𝑤𝑤𝑤 = −
1

1 − 2𝑋𝑋𝑋𝑋
𝑋𝑋𝑋𝑋 − 𝑉𝑉𝑉𝑉

.                         (19) 

 
So, if 𝜙𝜙𝜙𝜙 = 𝜙𝜙𝜙𝜙0, then 𝑋𝑋𝑋𝑋 = 0, implying 
 

𝑤𝑤𝑤𝑤 = −1     𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 = 1                       (20) 
 
thus, quintessence in a constant value of the potential 
implies always stiff matter perturbations with 
cosmological constant equation of state. 

Conversely, a dust-like fluid by definition has 
𝜆𝜆𝜆𝜆 ≠ 0 and 𝐾𝐾𝐾𝐾 ≠ 𝑋𝑋𝑋𝑋. We would obtain 

𝑤𝑤𝑤𝑤 = −
1

1 − 2𝑋𝑋𝑋𝑋(𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋)
𝐾𝐾𝐾𝐾 − 𝑉𝑉𝑉𝑉

,               (21) 

 
where in the simplest case, 𝐾𝐾𝐾𝐾 = 𝑋𝑋𝑋𝑋, it becomes 𝑤𝑤𝑤𝑤 =
−1 at 𝜙𝜙𝜙𝜙 = 𝜙𝜙𝜙𝜙0, as evident from  

 

𝑤𝑤𝑤𝑤 = −
1

1 − 2𝑋𝑋𝑋𝑋(𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋)
𝑋𝑋𝑋𝑋 − 𝑉𝑉𝑉𝑉

.                 (22) 

 
An interesting case occurs as𝑉𝑉𝑉𝑉 = 0, having that 

different fluids can be obtained by virtue of fixing 𝜆𝜆𝜆𝜆 
and 𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 appropriately. Below, we can focus on some 
relevant cases. 

− Stiff matter-like. In the quasi-quintessence 
picture, it is possible to obtain a generic fluid when 
𝑉𝑉𝑉𝑉 = 0, having 

 

𝑤𝑤𝑤𝑤𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = −
1

1 − 2𝑋𝑋𝑋𝑋(𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋)
𝐾𝐾𝐾𝐾

,             (23) 

 
that is not stiff matter because it does not happen 
simultaneously that 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 = 0 an 𝑤𝑤𝑤𝑤 = 1 with arbitrary 
choices of 𝑋𝑋𝑋𝑋,𝐾𝐾𝐾𝐾 and 𝜆𝜆𝜆𝜆. In the quintessence scenario, 
on the other hand, if 𝑉𝑉𝑉𝑉 = 0, the fluid is always stiff 
matter, since 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 = 1 and 𝑤𝑤𝑤𝑤𝑄𝑄𝑄𝑄 = 1 are easily fulfilled 
at the same time. For quasi-quintessence, we obtain 
stiff matter when 

 
𝑋𝑋𝑋𝑋(𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋) = 𝐾𝐾𝐾𝐾.                     (24) 

 
If 𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 = 0, then 𝑋𝑋𝑋𝑋𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 = 𝐾𝐾𝐾𝐾, yielding 
 

𝐾𝐾𝐾𝐾 = 𝛽𝛽𝛽𝛽𝑋𝑋𝑋𝑋,                             (25) 
 

with 𝛽𝛽𝛽𝛽 unspecified constant. If 𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 ≠ 0, the solution, 
for constant 𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋, becomes 

 
𝐾𝐾𝐾𝐾 = 𝛽𝛽𝛽𝛽𝑋𝑋𝑋𝑋 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋.                    (26) 

 
− Generic fluids. Motivated by Eq. (25) and 

(26), we can select the peculiar case 𝐾𝐾𝐾𝐾 = 𝑋𝑋𝑋𝑋, leading 
to 

𝑤𝑤𝑤𝑤 =
1

1 + 2𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋
.                  (27) 

 
Hence, 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 ∈ 𝑅𝑅𝑅𝑅+ and 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 ∈ 𝑅𝑅𝑅𝑅− give rise to 

standard and exotic fluids respectively, for some 
values of 𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋. Nevertheless, assuming 𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 fixed, 𝑤𝑤𝑤𝑤 =
𝑤𝑤𝑤𝑤(𝜆𝜆𝜆𝜆) i.e., implying that the equation of state depends 
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on the peculiar choice of 𝜆𝜆𝜆𝜆 and can have different 
alternative values. 

− Matter-like fluids. In quasi-quintessence, it 
is not possible for 𝑤𝑤𝑤𝑤 to be zero unless trivial cases are 
considered. Specifically, unphysical cases with 
divergent values for 𝑋𝑋𝑋𝑋,𝐾𝐾𝐾𝐾, and 𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 would imply 𝑤𝑤𝑤𝑤 →
0. However, if 𝐾𝐾𝐾𝐾 = 𝒱𝒱𝒱𝒱 = 0 with 𝑋𝑋𝑋𝑋 ≠ 0 and 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 ≠ 0, 
it can result in 𝑤𝑤𝑤𝑤 = 0. More generally, if 𝑋𝑋𝑋𝑋 = 𝑋𝑋𝑋𝑋0 and 
𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉0 and 𝐾𝐾𝐾𝐾0 = 𝑉𝑉𝑉𝑉0, we obtain the same result of 
𝑤𝑤𝑤𝑤 = 0. In this case, 𝐾𝐾𝐾𝐾0 and 𝑉𝑉𝑉𝑉0 can be constants since 
𝐾𝐾𝐾𝐾 and 𝑉𝑉𝑉𝑉 are functions of independent variables, 𝜙𝜙𝜙𝜙 
and 𝜕𝜕𝜕𝜕𝜙𝜙𝜙𝜙, so they cannot be equal for any value of 𝜙𝜙𝜙𝜙, 
i.e., 𝐾𝐾𝐾𝐾 = 𝑉𝑉𝑉𝑉 only if 𝐾𝐾𝐾𝐾 = 𝑉𝑉𝑉𝑉 = 0.  

In this scenario, both 𝑤𝑤𝑤𝑤 = 0 and 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 = 0 
simultaneously, corresponding to baryons. 
Interestingly, this holds true for both cases where 
𝐾𝐾𝐾𝐾 = 𝑋𝑋𝑋𝑋 and 𝐾𝐾𝐾𝐾 ≠ 𝑋𝑋𝑋𝑋. Remarkably, the same outcome 
occurs in quintessence.  

In quasi-quintessence, it is possible for 𝑋𝑋𝑋𝑋 = 𝑋𝑋𝑋𝑋0 
and 𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉0 to coexist without resulting in dust. 
Assuming that 𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐾𝐾0 due to 𝑋𝑋𝑋𝑋 = 𝑋𝑋𝑋𝑋0, it is evident 
that 𝐾𝐾𝐾𝐾0 ≠ 𝑉𝑉𝑉𝑉0 can prevent 𝑤𝑤𝑤𝑤 from becoming zero. In 
this regard, quasi-quintessence exhibits a broader 
range of possibilities compared to quintessence. 

− The cosmological constant. A cosmological 
constant has 𝑤𝑤𝑤𝑤 = −1  and 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 = 0. So, arguing a 
cosmological constant in quasi-quintessence implies 
to find out a mathematical way to construct the 
cosmological constant without plugging it by hands 
into the energy-momentum tensor.  

An immediate focus on quintessence could be 
instructive before focusing on quasi-quintessence. 
There, 𝑉𝑉𝑉𝑉 ≫ 𝑋𝑋𝑋𝑋 yields 𝑤𝑤𝑤𝑤 ≃ −1. Even though 
appealing, this mimics the cosmological constant 
regime, but still preserves 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 = 1. So, in quintessence 
the cosmological constant cannot be obtained with 
arbitrary 𝑋𝑋𝑋𝑋 unless one either approximates it as above 
or sets 𝑋𝑋𝑋𝑋 = 0.  

In quasi-quintessence, instead, we have 
cosmological constant if 

 
𝑋𝑋𝑋𝑋𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 + 𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 = 0,                    (28) 

 
so, for constant 𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 

 
𝐾𝐾𝐾𝐾 = −𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 + 𝐾𝐾𝐾𝐾0,                    (29) 

 
whose limit, lim

𝑋𝑋𝑋𝑋→0
𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐾𝐾0, is not necessarily zero, i.e., 

𝐾𝐾𝐾𝐾 does not forcedly vanish as 𝑋𝑋𝑋𝑋 → 0. 
 

 

Conversely, 𝑋𝑋𝑋𝑋 = 0 implies 𝐾𝐾𝐾𝐾 = 𝑉𝑉𝑉𝑉, in analogy to 
quintessence.  

So, besides the fact that the cosmological 
constant is reachable in quasi-quintessence, the most 
relevant fact consists in reproducing the very well-
known slow-roll phase, consisting here in 𝑉𝑉𝑉𝑉 ≪ 𝐾𝐾𝐾𝐾 that 
does not reproduce 𝑤𝑤𝑤𝑤 ≃ −1 since 

 

𝑤𝑤𝑤𝑤 = −
𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉 + 2𝑋𝑋𝑋𝑋(𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋)
,              (30) 

 
that interestingly is not phantom, i.e., 𝑤𝑤𝑤𝑤 > −1, as 
 

𝑋𝑋𝑋𝑋(𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋)
𝑉𝑉𝑉𝑉 + 2𝑋𝑋𝑋𝑋(𝐾𝐾𝐾𝐾𝑋𝑋𝑋𝑋 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋)

> 0.                (31) 

 
While quasi-quintessence is a dust-like fluid with 

pressure, the traditional dust remains pressureless. 
Since the fluid behaves like matter, exhibiting a 
pressure, but it is not dust, we can assume that its 
nature is associated with dark matter. For examples 
of dark matter with pressure, see e.g., Ref. [4] and 
references therein. 

This assumption has significant implications. 
Firstly, the equation of state for dark matter cannot be 
zero; it must have a non-zero value. Secondly, since 
this dark matter component is believed to contribute 
to the universe’s current acceleration, its equation of 
state should be negative.  

As a result, the equation of state for dark matter 
becomes exotic, consisting of a quasi-quintessence 
fluid that plays a role in accelerating the universe 
today. This implies a unified dark energy model 
where the same fluid acts as both dark matter and 
dark energy. Consequently, the cosmological model 
based on quasi-quintessence can be viewed as a 
unification model. Although it appears similar in 
form to the ΛCDM model, it is reinterpreted as a 
model featuring dark fluid. 

 
4 The cosmological constant problem 
 
In this subsection, we explore the concept of a 

“self-adjustment” Lagrangian, which could 
potentially offer a solution to the cosmological 
constant problem. The underlying idea involves the 
incorporation of a matter-like sector, similar to what 
quasi-quintessence achieves, with the specific role of 
mitigating the influence of the large vacuum energy. 
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A. Limitations from the Weinberg’s no go 
theorem  

 
To do so, it is essential to recall the Weinberg’s 

no-go theorem, according to which any self-
adjustment mechanism is jeopardized by fine-tuning. 
To show that, given the Lagrangian, ℒ[𝑔𝑔𝑔𝑔,𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖] we 
require that [7] 

− the vacuum is “translationally invariant”, 
implying that on-shell, we have 𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈 ,𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; 

− the corresponding symmetry is GL(4); 
− the vacuum expectation value of the overall 

Lagrangian might be constant before and zero after 
the adjustment. This is necessary to ensure the 
cancellation of the cosmological constant. 

Assuming 𝑀𝑀𝑀𝑀    𝜈𝜈𝜈𝜈
𝜇𝜇𝜇𝜇  is a constant 4 × 4 matrix, before 

the adjustment, a constant vacuum solution occurs, 
say 

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 ℒ =
𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖 +
𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈 .          (32) 

 
On the other hand, the vacuum field equations, as 

expected in the end of the adjustment, 
 

𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖

= 0,     
𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈

= 0.                  (33) 

 
So, to guarantee the latter relations to occur from 

Eq. (32), either 𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖

= 0 alone regardless 𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈

, or both 

are zero at the same time. For the first scenario, 𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖

=
0, 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 ℒ implies 

 
𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈

�𝛿𝛿𝛿𝛿𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈 + 𝛿𝛿𝛿𝛿𝑀𝑀𝑀𝑀𝜈𝜈𝜈𝜈𝜇𝜇𝜇𝜇� = 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿𝑀𝑀𝑀𝑀ℒ ⇒  
𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈

=
1
2
𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈ℒ                (34) 

 
that, once solved, provides 
 

ℒ = �−𝑔𝑔𝑔𝑔𝑉𝑉𝑉𝑉(𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖)                       (35) 
 
and so, to guarantee that 𝜕𝜕𝜕𝜕ℒ

𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈
= 0 holds, 𝑉𝑉𝑉𝑉(𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖) = 0 

is the unique solution. This clearly induces a severe 
fine-tuning.  

On the other side, following the original 
formulation made by Weinberg, assuming that Eqs. 
(33) do not hold independently we write 

 

2𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈

= �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝜑𝜑𝜑𝜑)
𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖

,                (36) 

 
representing an appropriate formulation of the 
problem in which we introduce weights, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖, 
depending on how the self-adjusting fields work. 

The above relation suggests a new scaling 
symmetry, namely 𝛿𝛿𝛿𝛿𝜖𝜖𝜖𝜖𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈 = 2𝜖𝜖𝜖𝜖𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈, 𝛿𝛿𝛿𝛿𝜖𝜖𝜖𝜖𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖 = −𝜖𝜖𝜖𝜖𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖, 
that under transformations, 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖 by 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖 → 𝜑𝜑𝜑𝜑𝚤𝚤𝚤𝚤� , and 
𝛿𝛿𝛿𝛿𝜖𝜖𝜖𝜖𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈 = 2𝜖𝜖𝜖𝜖𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈, 𝛿𝛿𝛿𝛿𝜑𝜑𝜑𝜑�0 = −𝜖𝜖𝜖𝜖, 𝛿𝛿𝛿𝛿𝜑𝜑𝜑𝜑�𝑖𝑖𝑖𝑖≠0 = 0, and because 
𝛿𝛿𝛿𝛿𝜖𝜖𝜖𝜖�𝑒𝑒𝑒𝑒2𝜑𝜑𝜑𝜑�0𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈� = 0, end up with 

 
ℒ = ℒ�𝑒𝑒𝑒𝑒2𝜑𝜑𝜑𝜑�0𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈,𝜑𝜑𝜑𝜑�𝑖𝑖𝑖𝑖≠0�.               (37) 

 
The transformations turn into 
 

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 ℒ =
𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑�0

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝜑𝜑𝜑𝜑�0 + 

+
𝜕𝜕𝜕𝜕ℒ

𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑�𝑖𝑖𝑖𝑖≠0
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝜑𝜑𝜑𝜑�𝑖𝑖𝑖𝑖≠0 +

𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈,       (38) 

 
yielding 

𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑�𝑖𝑖𝑖𝑖≠0

= 0,     
𝜕𝜕𝜕𝜕ℒ
𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈

= 0,                (39) 

 
where 𝜑𝜑𝜑𝜑�0 since it is assumed to be the only scalar. 

In a manner analogous to our previous approach, 
we assume that 𝜕𝜕𝜕𝜕ℒ

𝜕𝜕𝜕𝜕𝜑𝜑𝜑𝜑�𝑖𝑖𝑖𝑖≠0
= 0 without employing 𝜕𝜕𝜕𝜕ℒ

𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈
. 

By using our expressions for 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 ℒ, we derive the 
solution: 

 

ℒ = �−det�𝑒𝑒𝑒𝑒2𝜑𝜑𝜑𝜑�0𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈�𝑉𝑉𝑉𝑉(𝜑𝜑𝜑𝜑�𝑖𝑖𝑖𝑖≠0) = 

= �−𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒4𝜑𝜑𝜑𝜑�0𝑉𝑉𝑉𝑉(𝜑𝜑𝜑𝜑�𝑖𝑖𝑖𝑖≠0).                  (40) 
 
Consequently, from  𝜕𝜕𝜕𝜕ℒ

𝜕𝜕𝜕𝜕𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝜈𝜈𝜈𝜈
= 0 we deduce 

𝑒𝑒𝑒𝑒4𝜑𝜑𝜑𝜑�0𝑉𝑉𝑉𝑉(𝜑𝜑𝜑𝜑�𝑖𝑖𝑖𝑖≠0) = 0, which leads to the only physical 
possibility, namely 𝑉𝑉𝑉𝑉(𝜑𝜑𝜑𝜑�𝑖𝑖𝑖𝑖≠0) = 0. Again, this 
situation introduces a thorny fine-tuning.  

Hence, any proposal aimed at resolving the 
cosmological constant problem must address how it 
circumvents the need for such fine-tuning. 

 
B. Inflationary phase transition  
 
There is no consensus in overcoming the 

Weinberg no go theorem. Here, however, we report  
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one possible scenario that involves a constant 
vacuum solution comprising two components: one 
based on the potential contribution and the other on 
the kinetic part, which must be frozen and become 
constant. Immediately, assuming that the kinetic 
contribution is approximately constant one can recall 
quasi-quintessence. 

In this context, if the potential is not canceled, say 
it is not adjusted, but is transformed into a chemical 
potential as due to particle production during a 
metastable phase, the fine-tuning issue can be 
mitigated and the no go theorem can be healed. To 
clarify it, we intend not to resolve the no go theorem, 
but rather, we explain why the potential is canceled 
and how the energy density is transformed, violating 
it. 

Accordingly, the only viable approach to 
circumvent the no-go theorem is to introduce a 
metastable phase that violates the theorem as stated. 
During this phase, the corresponding GL(4) 
symmetry is broken, briefly disrupting the 
translational invariance of the vacuum. 

During this short-lived phase, particles can be 
created from vacuum energy. The adjustment 
mechanism modifies the magnitude of the constant 
violating the no-go theorem only during a phase 
transition, which is not a stable state but a temporary 
deviation from the no-go theorem’s constraints. 

Hence, let us introduce the simplest Lagrangian 
for phase transition through the potential embedded 
in a thermal bath [8] 

 

𝑉𝑉𝑉𝑉(𝜙𝜙𝜙𝜙) = 𝑉𝑉𝑉𝑉0 +
𝜒𝜒𝜒𝜒
4
𝜙𝜙𝜙𝜙04 +

𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2

2
𝜙𝜙𝜙𝜙02𝜙𝜙𝜙𝜙2 +

𝜒𝜒𝜒𝜒
4
𝜙𝜙𝜙𝜙4,       (41) 

 
where the symmetry breaking occurs as the effective 
mass changes sign. Here, 𝜒𝜒𝜒𝜒 is a dimensionless 
coupling constant and 𝜙𝜙𝜙𝜙0 represents the value of 𝜙𝜙𝜙𝜙 at 
the minimum.  

As a result, the critical temperature induces a 
phase transition with significant consequences: 

− Before the transition, 𝑇𝑇𝑇𝑇 > 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶: The minimum 
associated with the potential lies at 𝜙𝜙𝜙𝜙 = 0, and the 
potential reads 𝑉𝑉𝑉𝑉0 + 𝜒𝜒𝜒𝜒

4
𝜙𝜙𝜙𝜙04. 

− During the transition: The universe 
experiences an inflationary phase with vacuum 
energy acting as a source. 

− After the transition, 𝑇𝑇𝑇𝑇 < 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶: When the 
temperature drops below 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶, the minimum of the 
potential shifts to 𝜙𝜙𝜙𝜙 = 𝜙𝜙𝜙𝜙0, and the potential is given 
by 𝑉𝑉𝑉𝑉0 at 𝜙𝜙𝜙𝜙 = 𝜙𝜙𝜙𝜙0. 

As a byproduct of the above the classical 
cosmological constant problem is revised if we set 
𝑉𝑉𝑉𝑉0 = −𝜒𝜒𝜒𝜒

4
𝜙𝜙𝜙𝜙04, then vacuum energy density, denoted as 

𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, becomes zero before the transition, implying 
that 𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is non-zero after the transition. Conversely, 
if we choose 𝑉𝑉𝑉𝑉0 = 0, vacuum energy is set to zero 
after the transition, but before the transition, 𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is 
non-zero.  

In both cases, it is crucial to note that vacuum 
energy cannot be zero simultaneously before and 
after the transition because the offset 𝑉𝑉𝑉𝑉0 cannot 
vanish during those periods. 

However, by revisiting the classical cosmological 
constant problem with quasi-quintessence, as 
demonstrated in [9], it is possible to employ a 
constant generalized kinetic term. This is achieved 
by: 

1. Ensuring shift symmetry invariance, namely 
𝜙𝜙𝜙𝜙 → 𝜙𝜙𝜙𝜙 + 𝑐𝑐𝑐𝑐0, with 𝑐𝑐𝑐𝑐0 as a generic constant. 

2. Fixing the conserved currents through the 
Noether theorem. 

3. Requiring structures to form at all scales and 
invoking standard thermodynamics. 

Meeting these requirements incorporates the sign 
of 𝐾𝐾𝐾𝐾0 as the opposite of the potential at its minima. 
As the two signs are opposite, we can potentially 
provide a resolution to the cosmological constant 
problem.  

In summary, quasi-quintessence offers a novel 
approach to addressing the cosmological constant 
problem by introducing a constant kinetic term and 
shift symmetry invariance, providing an alternative 
description of dark energy.  

Bearing this in mind, we thus re-explore below 
the two possibilities to fix the offset and delete the 
cosmological constant. 

1) If we select 𝑉𝑉𝑉𝑉0 = −𝜒𝜒𝜒𝜒𝜑𝜑𝜑𝜑04/4, then before the 
transition we obtain 𝑉𝑉𝑉𝑉 = 0 and therefore 

2)  

𝑃𝑃𝑃𝑃1 = �
𝐾𝐾𝐾𝐾0, (𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇)

𝐾𝐾𝐾𝐾0 + 𝜒𝜒𝜒𝜒𝜑𝜑𝜑𝜑04/4, (𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇) ,              (42) 

 

𝜌𝜌𝜌𝜌1 = �
2𝑋𝑋𝑋𝑋𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 − 𝐾𝐾𝐾𝐾0, (𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇)

2𝑋𝑋𝑋𝑋𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 − 𝐾𝐾𝐾𝐾0 − 𝜒𝜒𝜒𝜒𝜑𝜑𝜑𝜑04/4, (𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇) ,      (43) 

 
where we labeled the pressure and density with the 
subscript “1” to indicate that we are employing the 
first possible case. Here, we have in addition that 𝐾𝐾𝐾𝐾0 
may turn into 𝐾𝐾𝐾𝐾0 < −𝜒𝜒𝜒𝜒𝜑𝜑𝜑𝜑04/4. 

3) If we select 𝑉𝑉𝑉𝑉0 = 0, after the transition we 
find 𝑉𝑉𝑉𝑉 = 0, so that 
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𝑃𝑃𝑃𝑃2 = �𝐾𝐾𝐾𝐾0 − 𝜒𝜒𝜒𝜒𝜑𝜑𝜑𝜑04/4, (𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇)
𝐾𝐾𝐾𝐾0, (𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇) ,            (44) 

 

𝜌𝜌𝜌𝜌2 = �2𝑋𝑋𝑋𝑋𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 − 𝐾𝐾𝐾𝐾0 + 𝜒𝜒𝜒𝜒𝜑𝜑𝜑𝜑04/4, (𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇)
2𝑋𝑋𝑋𝑋𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 − 𝐾𝐾𝐾𝐾0, (𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇) , 45) 

 
where again we labeled the pressure and density 

with the subscript “2” to indicate the second 
occurrence, having this time 𝐾𝐾𝐾𝐾0 < 0. 

Consequently, in both cases 𝐾𝐾𝐾𝐾0 < 0, albeit their 
magnitude upper values change accordingly. Even 
though the model offers a possibility in 
circumventing the no go theorem and the 
cosmological constant problem, the nature of the 
potential during the phase transition, its compatibility 
with Planck measurements on inflationary potential, 
and its behavior in small and 

large field domains are however not well-
established and require further investigation. 

 
5 Late and early dynamics: dark energy and 

inflation 
 
In view of the above results, let us focus on dark 

energy first. 
The cosmological constant contribution is 

generally defined as [10] 
 

𝛬𝛬𝛬𝛬 =  𝛬𝛬𝛬𝛬𝐵𝐵𝐵𝐵 + 𝛬𝛬𝛬𝛬𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ,                      (46) 
 

where 𝛬𝛬𝛬𝛬𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the value of vacuum energy associated 
with quantum fluctuations, whereas 𝛬𝛬𝛬𝛬𝐵𝐵𝐵𝐵 is the bare 
cosmological constant that enters the Einstein’s field 
equations in fulfilment with the Bianchi identities. In 
our picture, above, 𝛬𝛬𝛬𝛬𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≃

𝜒𝜒𝜒𝜒
4
𝜙𝜙𝜙𝜙04. 

Then, after the transition phase, 𝛬𝛬𝛬𝛬𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is deleted as 
we showed in the two mentioned cases earlier. The 
only remaining contribution is the bare cosmological 
constant that, after the transition, induces the 
universe to accelerate when it comes dominant over 
matter and radiation. 

The fine-tuning is avoided because the bare 
cosmological constant is the only quantity that is 
proportional to the trace of the Einstein equations and 
the field, 𝜑𝜑𝜑𝜑, is no longer dynamical. 

The bare cosmological constant plays the role of 
emergent cosmological constant, which is negligible 
with respect to the vacuum energy. 

While the fine-tuning problem is clearly 
removed, because the high value of the predicted 
vacuum energy density is suppressed, the 

coincidence problem remains. To alleviate it, let us 
recall that the bare cosmological constant magnitude 
might be proportional to the trace of the Einstein 
tensor. Thus, it corresponds to the sum between 𝜌𝜌𝜌𝜌 +
3𝑃𝑃𝑃𝑃 of all the species filling the universe. 

The coincidence problem is therefore fixed 
assuming that the constant remaining after the phase 
transition is a bare cosmological constant associated 
with the trace of the Einstein tensor. 

Bearing this in mind, the Hubble parameter, 
𝐻𝐻𝐻𝐻(𝑧𝑧𝑧𝑧), becomes 

 

𝐻𝐻𝐻𝐻(𝑧𝑧𝑧𝑧) ≡ 𝐻𝐻𝐻𝐻0�
2𝑋𝑋𝑋𝑋𝜆𝜆𝜆𝜆0𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣,0

(1 + 𝑧𝑧𝑧𝑧)3 +
𝐾𝐾𝐾𝐾𝐵𝐵𝐵𝐵
𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣,0

,       (47) 

 
where we can identify the bare contribution induced 
into the definitions of mass and dark energy densities, 
𝛺𝛺𝛺𝛺𝑚𝑚𝑚𝑚 ≡ 2𝑋𝑋𝑋𝑋𝜆𝜆𝜆𝜆0𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋/𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣,0, 𝛺𝛺𝛺𝛺𝛬𝛬𝛬𝛬 ≡ −𝐾𝐾𝐾𝐾𝐵𝐵𝐵𝐵/𝜌𝜌𝜌𝜌𝑣𝑣𝑣𝑣,0, whereas 𝜆𝜆𝜆𝜆0 is 
the initial value of the Lagrange multiplier. 

About inflation, during the transition, where the 
no-go theorem is violated, inflation becomes a crucial 
aspect of the cosmological model. This inflationary 
phase is driven by the violation of the theorem and 
involves the contribution of vacuum energy, leading 
to a de Sitter-like accelerating expansion of the 
universe.  

To describe this transition accurately, the 
potential must have a more intricate form than a 
simple fourth-order potential. This is because the 
fourth-order potential has been ruled out as a 
candidate for inflationary potentials based on 
observations, such as those from the Planck mission 
[11].  

The key requirements for constructing a potential 
that characterizes the metastable phase during the 
transition are as follows: 

− Inducing phase transition: The potential 
should induce a phase transition. In simpler terms, its 
behavior for small field values should resemble 
something proportional to 𝜑𝜑𝜑𝜑4. 

− Transition end: The universe must exit the 
transition phase and settle into the symmetry 
minimum once the metastable phase ends. 

To meet these requirements, several 
considerations come into play: 

− Role of the field: The field itself induces the 
phase transition, and it acts as the inflaton during the 
metastable phase. 

− Vacuum energy suppression: The 
cancellation mechanism via the quasi-quintessence 
field suppresses vacuum energy during the transition, 
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which is essential for resolving the cosmological 
constant problem. 

− Similarities to old and new inflation: The 
described mechanism bears similarities to both old 
and new inflation scenarios. It involves a phase 
transition like old inflation but has the potential to 
escape the metastable phase in a manner akin to new 
inflation. 

The goal is to unify the key features of old and 
new inflation into a single framework, where new 
inflation is induced by the mechanisms that violate 
the no-go theorem during the transition. 

As inflation progresses, the potential can reach a 
fixed point, and it is assumed that the phase transition 
occurs due to vacuum energy. This transition halts 
when an attractor state is reached, characterized by 
conditions where the field approaches its minimum 
value 𝜑𝜑𝜑𝜑0 and its time derivative  𝜑̇𝜑𝜑𝜑 approaches zero. 

After the transition, the behavior of vacuum 
energy changes according to this scheme. It is likely 
transformed into particles created during the 
reheating phase or through particle production related 
to the evolving geometry of the universe. 

Therefore, a suitable potential for this scenario 
should be constructed with the following 
considerations in mind: 

− Smooth transition: The potential should 
smoothly connect the phases before and after the 
transition, ensuring continuity in the energy budget 
of the universe. 

− Compatibility with observations: The 
potential should align with current observational 
constraints, such as those from the Planck mission. 

− First-order phase transition: The 
thermodynamics of the potential should exhibit a 
first-order phase transition. 

By addressing these aspects, we consider a 
positive-definite general double-exponential 
potential [4] 

 
𝑉𝑉𝑉𝑉(𝛷𝛷𝛷𝛷) = 𝑉𝑉𝑉𝑉0 + 

+𝒜𝒜𝒜𝒜[𝑎𝑎𝑎𝑎 exp(𝛼𝛼𝛼𝛼𝛷𝛷𝛷𝛷𝑣𝑣𝑣𝑣1) + +𝑏𝑏𝑏𝑏 exp(𝛽𝛽𝛽𝛽𝛷𝛷𝛷𝛷𝑣𝑣𝑣𝑣2)]𝑚𝑚𝑚𝑚,        (48) 
 
where 𝛷𝛷𝛷𝛷 ≡ 𝜑𝜑𝜑𝜑/𝜑𝜑𝜑𝜑0 is clearly the quasi-quintessence 
field normalized over its value 𝜑𝜑𝜑𝜑0 at the minimum of 
the potential and the arbitrary constants 
𝒜𝒜𝒜𝒜,𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏,𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽, 𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2 and 𝑚𝑚𝑚𝑚 can be fixed in a general 
and unrestricted manner. For example, requiring 
𝑉𝑉𝑉𝑉(0) = 𝑉𝑉𝑉𝑉0 + 𝜒𝜒𝜒𝜒𝜑𝜑𝜑𝜑04/4 at 𝛷𝛷𝛷𝛷 = 0 (or 𝜑𝜑𝜑𝜑 = 0), implies 
that  𝑎𝑎𝑎𝑎 = −𝑏𝑏𝑏𝑏 exp(𝛽𝛽𝛽𝛽 − 𝛼𝛼𝛼𝛼), and furthermore for 𝛷𝛷𝛷𝛷 =
1, or 𝜑𝜑𝜑𝜑 = 𝜑𝜑𝜑𝜑0, we must have 𝑉𝑉𝑉𝑉(1) = 𝑉𝑉𝑉𝑉0, leading to 

𝒜𝒜𝒜𝒜 = �𝜒𝜒𝜒𝜒𝜑𝜑𝜑𝜑0
4

4
� [𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏 exp(𝛽𝛽𝛽𝛽 − 𝛼𝛼𝛼𝛼)]−𝑚𝑚𝑚𝑚. Thus, for 𝛽𝛽𝛽𝛽 = 0, 

𝛼𝛼𝛼𝛼 < 0 and 𝑐𝑐𝑐𝑐1 = 1, and 𝑚𝑚𝑚𝑚 = 2, we obtain 
 

𝑉𝑉𝑉𝑉1(𝛷𝛷𝛷𝛷) = 𝑉𝑉𝑉𝑉0 +
𝜒𝜒𝜒𝜒𝜑𝜑𝜑𝜑04

4
�
1 − 𝑒𝑒𝑒𝑒−|𝛼𝛼𝛼𝛼|(𝛷𝛷𝛷𝛷−1)

1 − 𝑒𝑒𝑒𝑒|𝛼𝛼𝛼𝛼| �
2

,       (49) 

 
where 𝑚𝑚𝑚𝑚 was fixed since, in the regime of small 
oscillations around 𝛷𝛷𝛷𝛷 = 1, the potential is expected 
to be quadratic [12]. 

The so-obtained potential mimes the Starobinsky 

potential 𝑉𝑉𝑉𝑉(𝛷𝛷𝛷𝛷) = 𝛬𝛬𝛬𝛬4 �1− 𝑒𝑒𝑒𝑒
−�23�
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𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

�𝛷𝛷𝛷𝛷
�  for 

𝛬𝛬𝛬𝛬4 ≃
𝜒𝜒𝜒𝜒𝜑𝜑𝜑𝜑04

4 �1 − 𝑒𝑒𝑒𝑒|𝛼𝛼𝛼𝛼|�
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,     𝛼𝛼𝛼𝛼 ≃ �2
3
𝜑𝜑𝜑𝜑0
𝑀𝑀𝑀𝑀𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃

.       (50) 

 
Requiring 𝑉𝑉𝑉𝑉1(0) = 𝑉𝑉𝑉𝑉1(+∞) and V0 = −χ𝜑𝜑𝜑𝜑0/4, we 

find the constraint |α| = ln 2. Further, plugging in this 
value in the expression of α given by Eq. (50), we 
obtain 𝜑𝜑𝜑𝜑0

𝛿𝛿𝛿𝛿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
= �3/2 ln 2 ≈ 0.85. 

So, it is possible to heuristically construct the 
Starobinsky potential, once we considered a quasi-
quintessence field. The regime of inflation appears 
naturally once we violate the no-go theorem. 

 
6 Final outlooks and perspectives  
 
We have highlighted the key characteristics of 

quasi-quintessence, a field description derived from 
a Lagrangian formulation that includes a Lagrange 
multiplier. The quasi-quintessence model is 
particularly intriguing due to its property of having a 
vanishing sound speed 

while maintaining a generally non-zero equation 
of state. Consequently, we delved into the concept of 
a matter-like substance with pressure linked to quasi-
quintessence and examined some specific scenarios 
that arise when the model’s free parameters are fixed. 
In our exploration, we encountered cases resembling 
radiation and the cosmological constant, and we 
compared these findings with the more established 
quintessence framework. 

In light of our investigation, we contemplated 
potential applications for quasi-quintessence and 
why this fluid can be considered as an effective 
representation of dark energy, in analogy to models 
of unified dark energy scenarios [13-25] 
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To address these questions, we revisited 
Weinberg’s no-go theorem within the context of the 
cosmological constant problem. We emphasized that 
solving this problem often necessitates careful fine-
tuning of the Lagrangian, effectively shifting the 
problem rather than resolving it. Leveraging the 
insights from the no-go theorem, we propose that 
quasi-quintessence can function as a fluid with a 
constant generalized kinetic component. This implies 
a specific transition period during which the no-go 
theorem is violated. Violation of this theorem 
suggests that the potential governing the field 
becomes field-dependent during the transition, a 
phenomenon we interpret as inflation. In essence, 
inflation becomes a manifest occurrence that 
transpires because the no-go theorem is breached for 
a brief period, precisely the number of e-foldings 
required to inflate the universe. 

Moreover, we derived a plausible effective 
potential during this transition and a post-transition 
Hubble rate that bears resemblance to the ΛCDM 
model. While the standard model is achieved by 
incorporating an effective cosmological constant 
contribution, specifically the bare cosmological 
constant, during the transition phase, the effective 
potential exhibits characteristics akin to the 
Starobinsky model, underscoring the validity of our 
approach [26-28]. We stress that the use of quasi-
quintessence to amend the cosmological constant 
problem is consequence of the cancellation 
mechanism that we here developed. The latter, in fact, 
predicts the existence of quasi-quintessence 
meanwhile it acts to heal the cosmological constant 
problem. 

Summing up, the cancellation mechanism 
provided in the pioneering work [9] predicts that to 
cancel the degrees of freedom of the cosmological 

constant one can invoke the existence of quasi-
quintessence. However, an inflationary stage is 
expected to occur because during the transition the 
no-go theorem is violated, i.e., the shift symmetry is 
no longer valid. 

Our future research endeavors will focus on 
elucidating the remaining intricacies of this puzzle. 
Initially, we aim to provide a more comprehensive 
interpretation of the results in the context of the no-
go theorem, elucidating the conditions under which it 
becomes possible to physically contravene the 
theorem. One avenue worth exploring may involve 
requiring a varying cosmological constant during the 
transition or, more likely, to violate the shift 
symmetry and to expect inflation not to lie on this 
hypothesis, as commonly, instead, it is assumed in 
current literature. In other words, is that possible to 
invoke an inflation without shift symmetry? To 
answer this question, we subsequently intend to offer 
a more detailed explanation of how particle 
production genuinely occurs throughout this process, 
avoiding any reliance on arbitrary fine-tuning. The 
self-consistency of the model can only be achieved if 
we refrain from imposing predetermined values to 
match observations with our theoretical framework. 
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