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Non-relativistic solutions of the modified Hylleraas potential  
in the presence of external magnetic and Aharonov-Bohm  

flux fields for heteronuclear diatomic molecules

In this study, we solve the Schrödinger equation with the modified Hylleraas potential (MHP) using the 
Nikiforov-Uvarov method in the presence of external magnetic and Aharonov-Bohm (AB) flux fields. We 
determine non-relativistic energy eigenvalues for various vibrational and magnetic quantum numbers, and 
examine the energy spectra of the MHP with and without these external fields for heteronuclear diatomic 
molecules like Carbon monoxide (CO) and hydrogen chloride (HCl). We observe that the presence of these 
fields increases the energy spectrum and breaks degeneracy. These findings could enable precision molecu-
lar spectroscopy, quantum control in molecular devices, and energy storage technologies. Additionally, we 
discover that the AB flux field has a more significant impact on the energy spectrum compared to the mag-
netic field. We also analyze the system’s thermodynamic properties, including the partition function, mean 
energy, specific heat capacity, free energy, and entropy, providing valuable insights into its behavior. Gen-
erally, this study lays a foundation for further investigation into various quantum chemistry topics, high-
lighting how external fields can significantly influence the properties and behavior of molecular systems.
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1 Introduction 
 
The Schrödinger equation indeed lies at the 

focal point of the non-relativistic quantum 
mechanics, providing a fundamental framework for 
understanding the behavior of quantum systems. It's 
fascinating how, once solved, it encapsulates so 
much about a system, offering insights into its 
energy levels and wavefunctions [1-3]. Various 
potential models have been devised to describe 
interactions within quantum systems [4-6], and the 
modified Hylleraas potential model is one such 
approach. It is particularly useful in contexts where 
two charged particles interact, such as the nuclei in a 
diatomic molecule. The modified Hylleraas 
potential is valuable for understanding molecular 
structure and dynamics, offering unique advantages 
by accurately modeling both short- and long-range 
interactions. Unlike other potentials, it captures 

complex quantum behaviors and allows precise 
exploration of field-induced effects on molecular 
energy spectra, providing deeper insights into 
molecular dynamics and enhancing quantum 
chemistry applications.The diverse methods 
researchers have developed to solve the Schrödinger 
equation with these potential models demonstrate 
the depth of exploration in quantum mechanics and 
the ongoing quest to understand complex systems at 
the quantum level [7-11]. The modified Hylleraas 
potential is given as; 
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where Vo is the depth of the potential well, a and b 
are the potential parameters, α  is the screening 
parameter. The modified Hylleraas potential (MHP) 
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model is a short-range potential that can be used to 
describe interactions within molecular, atomic, or 
nuclear systems [12]. The MHP has been used 
extensively in recent studies involving diatomic 
molecules [13,14]. Currently, the effect of magnetic 
and Aharanov-Bohm (AB) flux fields on energy 
spectrum of quantum systems have been on the 
forefront research [15,16]. For instance, the 
investigation by Edet [17] on the Yukawa potential 
energy spectra and the work by Horchani et al. [18] 
on the inversely quadratic Yukawa potential 
highlight the importance of understanding how 
external fields affect these systems. Additionally, 
Ikot et al. [19] contribute by emphasizing the 
significance of external fields on energy spectra and 
magnetic properties. The appealing effects of 
magnetic and AB field on the energy spectra, 
thermodynamics and magnetic properties of systems 
motivates us to study the impact of these fields on 
the modified Hylleraas potential. The motivation 
comes from the fact that this potential model fines 
very useful application in a wide area of specialties 
in physics and chemical physics. In this paper, we 

present the solution to the Schrodinger equation 
(SE) for the MHP model in the presence of 
magnetic and AB flux fields using the Nikifarov-
Uvarov method. Then the energy obtained is applied 
to measure the partition function and other 
thermodynamic functions such as; entropy, mean 
energy, free energy, and specific heat capacity. This 
paper is structured as follows: In Section 2, we 
provide the solution to the Schrodinger equation for 
the modified Hylleraas potential, accounting for 
magnetic and AB fields. In Section 3, the 
thermodynamic properties of the potential model 
under consideration are evaluated. The discussion of 
our findings is presented in Section 4, and our 
conclusion is presented in Section 5. 
 

2 Theoretical frameworks  
 
The Schrodinger equation for a particle 

moving in a cylindrical coordinate system within 
the modified Hylleraas potential under the 
combined effect of magnetic and AB fields can be 
stated as; 
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where mnE  is the energy eigenvalues, r is inter 
nuclear distance and µ  is the reduced mass of the 

system. A


 is the vector potential written as a 
superposition of two terms 1 2A A A= +

  

 [16] 
having azimuthal component and external magnetic 
field with 1 2A B; A 0∇× = ∇× =
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, B


is the magnetic field 

perpendicular to the plane of transversal motion of 

the particle, and AB
2 ˆA

2 r
φ

= ϕ
π



, ABφ is the addition 

AB field created by a solenoid in a cylindrical 
coordinate [20]. 

 The vector potential can be written more 
explicitly as; 
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We define the wave function in Eq. (2) as 

( ) ( ) imR r
r, e

2 r
− ϕψ ϕ =

π
 where m is the magnetic 

quantum number and R(r) is the radial part of the 
wave function. Substituting the wave function and 
Eq. (3) into Eq. (2), we obtain a second order 
differential equation given as; 
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The exact solution of Eq. (4) cannot be obtained; 
hence we find the approximate solution by 
introducing the Greene and Aldrich approximation 
[21] stated by Eq. (5) to handle the centrifugal term, 
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The approximation here is valid for very small 

values of the screening parameterα . The Greene 
and Aldrich approximation simplifies the centrifugal 
term by replacing the angular momentum term with 
an effective potential, making the problem  

analytically solvable. However, this approximation 
assumes that the centrifugal force is weak, which 
may not hold in systems with high angular 
momentum or when the external fields significantly 
alter the molecular dynamics. This limitation could 
lead to reduced accuracy, especially for higher 
quantum numbers or stronger field strengths, where 
the centrifugal term plays a more prominent 
role.Considering the approximation stated in Eq. (5) 
and the transformation 2 rz e− α= , Eq. (4) is 
rewritten in terms of the new variable z as 
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Equation (6) is a hypergeometric type second 

order differential equation which solvable by the 
Nikiforov-Uvarov (NU) method. Comparing the Eq. 
(6) to the standard NU equation [22] stated by Eq. 
(7), we obtain the requisite polynomials given by 
(8). 
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Using the polynomials in Eq. (8), another useful 

polynomial (z)π  is obtained as prescribed by the  

NU method. A brief review of the NU method is as 
presented by [22]. The Nikiforov-Uvarov method is 
chosen for its efficiency in providing better 
analytical solutions to second-order differential 
equations, simplifying complex potential models 
like the modified Hylleraas potential under external 
fields. 
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where 
1

1
4

β = + γ  

Equating the discriminant of the quadratic 
expression within the square root sign to zero, and 
solving the ensuring equation for k. 

 

 ( )2 3 3 2 3k 2 2= − + ± + +γ γ γ β γ γ  (10) 
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model is a short-range potential that can be used to 
describe interactions within molecular, atomic, or 
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Accepting the negative solution of k and 
substituting it into Eq.(9), we have 
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Substituting the parameters 1 2,γ γ  and 3γ as 

earlier defined into Eq. (17), we obtain the non-
relativistic energy eigenvalue of the MHP; 
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3 Thermodynamic properties of the modifed 
Hylleraas potential 

 
The thermodynamic properties of a system are 

easily obtained when the partition function of the 
system is known [23]. However, the partition 
function (PF) is determined by obtaining the 
summation of all possible vibration energy of the 
system. Given the energy spectrum of stated in Eq. 
(19), the partition function ( )Z β for the MHP at a 
finite temperature T, is calculated in terms of the 
Boltzmann factor. 
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Using Eq. (24) other thermodynamic relations 
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The partition function ( )Z β  becomes; 
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Writing Eq. (22) in integral form we have; 
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Using Maple 10.0 version, the partition function 
of Eq. (23) can be evaluated as 
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And the imaginary error function (y)erfi  is 

defined as follows  
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Using Eq. (24) other thermodynamic relations 

are found as follows: 
(a) vibrational mean energy  
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(b) Vibrational specific heat capacity  
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(c) Vibrational free energy  
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4 Results and discussion 
 
The study of heteronuclear diatomic molecules 

such as carbon monoxide (CO) and hydrogen 
chloride (HCl) is crucial due to their diverse 
applications in atmospheric science, spectroscopy, 
and industrial processes. Their unique bond prope-
rties, dipole moments, and vibrational-rotational 
spectra provide critical insights into molecular 
dynamics, advancing chemical analysis, environ-
mental monitoring, and quantum information 
systems. To validate our findings, we employed 
spectroscopic data from Table 1 to analyze the 
energy levels of HCl and CO under external 
magnetic and Aharonov-Bohm (AB) flux fields. The 
analysis utilized the following referenced values: 

 
, 

1 41 1.239841875 10 ,cm eV− −= × and 

 
 
[24] in our calculations. Tables 2 and 3 present the 
energy levels for the modified Hylleraas potential of 
HCl and CO, respectively, considering the influence 
of AB flux field (ζ ) and external magnetic field 
(B) across various magnetic (m) and vibrational (n) 
quantum numbers using Equation (19). The 
Aharonov-Bohm (AB) effect is a quantum 
mechanical phenomenon where a charged particle 
experiences a phase shift when moving around a 
region with a magnetic field, even if the magnetic 
field is zero along the particle's path. The AB flux 
field represents the effect of this phenomenon on the 
molecule's energy levels. We observed degeneracy 
when both fields are absent (ζ  = B = 0) for m = 1 
and m = -1. Under the exclusive influence of the 
magnetic field (B ≠ 0; ζ = 0), energy levels rise, 
eliminating degeneracy while retaining quasi-
degeneracy. Sole exposure to the AB field (B = 0; 
ζ  ≠ 0) abolishes degeneracy, confining the system 
further. Consequently, the combined impact of both 
fields surpasses individual effects, causing a 
significant shift in the system's energy spectrum. 
This suggests that the interaction between the AB 
flux field and the external magnetic field alters the 
energy levels in a more pronounced manner than 
either field acting alone. In Figures 1 to 5, we 
plotted the thermodynamic functions against the 
temperature for selected heteronuclear diatomic 
molecules. Figure 1 depicts the partition function for 
HCl and CO. It was observed that as the temperature 

increases the molecules energy decreases. This 
implies that at higher temperatures, the distribution 
of these molecules among their energy states 
decreases rather than increases. Also, Fig 2 indicates 
a shape increase in the mean energy at almost zero 
temperature and an exponential decrease as the 
temperature increases. This behavior is consistent 
with the Boltzmann distribution, which describes 
the distribution of energy among the different 
energy states of a system at thermal equilibrium. At 
higher temperatures, particles are distributed among 
a greater number of energy states, resulting in a 
decrease in the average energy per particle. In Fig. 3 
we observed that there is a linear increase between 
the two molecules as both the specific heat capacity 
and temperature increases. The linear increase in 
specific heat capacity with temperature may be 
indicative of various physical processes occurring 
within the molecules as temperature rises. For 
example, in gases, increasing temperature leads to 
greater molecular motion and vibrational modes 
becoming active, which require more energy to 
excite. In solids, higher temperatures may lead to 
increased thermal expansion and more pronounced 
lattice vibrations, contributing to higher specific 
heat capacities. Fig. 4 shows a rapid increase in free 
energy at a constant temperature and it begins to 
converge when the temperature increases. The rapid 
increase in free energy at constant temperature may 
correspond to the onset of a phase transition or 
chemical reaction, where the system undergoes a 
significant change in its internal structure or 
composition. The convergence of free energy with 
increasing temperature may indicate the stabilization 
of the system as temperature increases, leading to a 
reduction in the rate of change of free energy with 
temperature. The entropy against temperature is 
plotted in Fig. 5. We observed that as the 
temperature increase, the molecules entropy is seen 
to increase. The observed increase in entropy with 
increasing temperature is consistent with the general 
trend observed in many systems. As the temperature 
rises, the molecules in the system gain more thermal 
energy, leading to increased molecular motion and a 
greater number of accessible microstates. This 
increased molecular disorder contributes to an 
overall increase in the system's entropy. The 
increase in entropy with temperature has significant 
implications for various physical and chemical 
processes. For example, in phase transitions such as 
melting or vaporization, the increase in entropy with 
temperature plays a crucial role in determining the 
conditions under which these transitions occur. 

2931.4940281 am  Mu = eV c

1973.29 eV Ac
°

=

Table 1 – Spectroscopic parameters of the selected heteronuclear diatomic molecules [25]. 
 

 
 
Table 2 – Eigenvalues ( eV) for the modified Hylleraas potential for CO molecule with and without B and AB flux fields. 
 

m n B = 0; ζ = 0 B = 5 T; ζ = 0 B = 0; ζ = 5 B = 5 T; ζ = 5 

1 0 -10:89413685 -10:89412694 -10:88701166 -10:88700163 
 1 -10:79366351 -10:79365356 -10:78663755 -10:78662748 
 2 -10:69458650 -10:69457650 -10:68765794 -10:68764782 
 3 -10:59688007 -10:59687002 -10:59004712 -10:59003695 

0 0 -10:89437452 -10:89436462 -10:88843594 -10:88842593 
 1 -10:79389787 -10:79388793 -10:78804200 -10:78803194 
 2 -10:69481761 -10:69480762 -10:68904293 -10:68903282 
 3 -10:59710798 -10:59709795 -10:59141299 -10:59140284 

-1 0 -10:89413685 -10:89412696 -10:88938567 -10:88937567 
 1 -10:79366351 -10:79365358 -10:78897851 -10:78896846 
 2 -10:69458650 -10:69457652 -10:68996645 -10:68995636 
 3 -10:59688007 -10:59687004 -10:59232377 -10:59231363 

 
 
Table 3 – Eigenvalues ( eV) for the modified Hylleraas potential for HCl molecule with and without B and AB flux fields. 

 

m n B = 0; ζ = 0 B = 5 T; ζ = 0 B = 0; ζ = 5 B = 5 T; ζ = 5 

1 0 -3:962892968 -3:962876513 -3:911543641 -3:911526223 
 1 -3:805044609 -3:805027813 -3:756800366 -3:756782607 
 2 -3:656677388 -3:656660250 -3:611292839 -3:611274738 
 3 -3:517046921 -3:517029442 -3:474300445 -3:474282003 

0 0 -3:964628515 -3:964612149 -3:921703713 -3:921686402 
 1 -3:806674860 -3:806658153 -3:766347643 -3:766329991 
 2 -3:658210692 -3:658193643 -3:620275626 -3:620257633 
 3 -3:518490814 -3:518473424 -3:482762382 -3:482744047 

-1 0 -3:962892968 -3:962876683 -3:928507319 -3:928490109 
 1 -3:805044609 -3:805027984 -3:772740459 -3:772722907 
 2 -3:656677388 -3:656660421 -3:626290068 -3:626272175 
 3 -3:517046921 -3:517029612 -3:488427730 -3:488409495 

 
 

Molecules ( )eD eV  1Aϑα
°

− − 
 
 

 ( )er A   ( )μ MeV  

HCl 4.6190309050 1.86770 1.2746 0.09129614886 
CO 11.225600000 2.29940 1.1283 0.63906749030 
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4 Results and discussion 
 
The study of heteronuclear diatomic molecules 

such as carbon monoxide (CO) and hydrogen 
chloride (HCl) is crucial due to their diverse 
applications in atmospheric science, spectroscopy, 
and industrial processes. Their unique bond prope-
rties, dipole moments, and vibrational-rotational 
spectra provide critical insights into molecular 
dynamics, advancing chemical analysis, environ-
mental monitoring, and quantum information 
systems. To validate our findings, we employed 
spectroscopic data from Table 1 to analyze the 
energy levels of HCl and CO under external 
magnetic and Aharonov-Bohm (AB) flux fields. The 
analysis utilized the following referenced values: 

 
, 

1 41 1.239841875 10 ,cm eV− −= × and 

 
 
[24] in our calculations. Tables 2 and 3 present the 
energy levels for the modified Hylleraas potential of 
HCl and CO, respectively, considering the influence 
of AB flux field (ζ ) and external magnetic field 
(B) across various magnetic (m) and vibrational (n) 
quantum numbers using Equation (19). The 
Aharonov-Bohm (AB) effect is a quantum 
mechanical phenomenon where a charged particle 
experiences a phase shift when moving around a 
region with a magnetic field, even if the magnetic 
field is zero along the particle's path. The AB flux 
field represents the effect of this phenomenon on the 
molecule's energy levels. We observed degeneracy 
when both fields are absent (ζ  = B = 0) for m = 1 
and m = -1. Under the exclusive influence of the 
magnetic field (B ≠ 0; ζ = 0), energy levels rise, 
eliminating degeneracy while retaining quasi-
degeneracy. Sole exposure to the AB field (B = 0; 
ζ  ≠ 0) abolishes degeneracy, confining the system 
further. Consequently, the combined impact of both 
fields surpasses individual effects, causing a 
significant shift in the system's energy spectrum. 
This suggests that the interaction between the AB 
flux field and the external magnetic field alters the 
energy levels in a more pronounced manner than 
either field acting alone. In Figures 1 to 5, we 
plotted the thermodynamic functions against the 
temperature for selected heteronuclear diatomic 
molecules. Figure 1 depicts the partition function for 
HCl and CO. It was observed that as the temperature 

increases the molecules energy decreases. This 
implies that at higher temperatures, the distribution 
of these molecules among their energy states 
decreases rather than increases. Also, Fig 2 indicates 
a shape increase in the mean energy at almost zero 
temperature and an exponential decrease as the 
temperature increases. This behavior is consistent 
with the Boltzmann distribution, which describes 
the distribution of energy among the different 
energy states of a system at thermal equilibrium. At 
higher temperatures, particles are distributed among 
a greater number of energy states, resulting in a 
decrease in the average energy per particle. In Fig. 3 
we observed that there is a linear increase between 
the two molecules as both the specific heat capacity 
and temperature increases. The linear increase in 
specific heat capacity with temperature may be 
indicative of various physical processes occurring 
within the molecules as temperature rises. For 
example, in gases, increasing temperature leads to 
greater molecular motion and vibrational modes 
becoming active, which require more energy to 
excite. In solids, higher temperatures may lead to 
increased thermal expansion and more pronounced 
lattice vibrations, contributing to higher specific 
heat capacities. Fig. 4 shows a rapid increase in free 
energy at a constant temperature and it begins to 
converge when the temperature increases. The rapid 
increase in free energy at constant temperature may 
correspond to the onset of a phase transition or 
chemical reaction, where the system undergoes a 
significant change in its internal structure or 
composition. The convergence of free energy with 
increasing temperature may indicate the stabilization 
of the system as temperature increases, leading to a 
reduction in the rate of change of free energy with 
temperature. The entropy against temperature is 
plotted in Fig. 5. We observed that as the 
temperature increase, the molecules entropy is seen 
to increase. The observed increase in entropy with 
increasing temperature is consistent with the general 
trend observed in many systems. As the temperature 
rises, the molecules in the system gain more thermal 
energy, leading to increased molecular motion and a 
greater number of accessible microstates. This 
increased molecular disorder contributes to an 
overall increase in the system's entropy. The 
increase in entropy with temperature has significant 
implications for various physical and chemical 
processes. For example, in phase transitions such as 
melting or vaporization, the increase in entropy with 
temperature plays a crucial role in determining the 
conditions under which these transitions occur. 
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Table 1 – Spectroscopic parameters of the selected heteronuclear diatomic molecules [25]. 
 

 
 
Table 2 – Eigenvalues ( eV) for the modified Hylleraas potential for CO molecule with and without B and AB flux fields. 
 

m n B = 0; ζ = 0 B = 5 T; ζ = 0 B = 0; ζ = 5 B = 5 T; ζ = 5 

1 0 -10:89413685 -10:89412694 -10:88701166 -10:88700163 
 1 -10:79366351 -10:79365356 -10:78663755 -10:78662748 
 2 -10:69458650 -10:69457650 -10:68765794 -10:68764782 
 3 -10:59688007 -10:59687002 -10:59004712 -10:59003695 

0 0 -10:89437452 -10:89436462 -10:88843594 -10:88842593 
 1 -10:79389787 -10:79388793 -10:78804200 -10:78803194 
 2 -10:69481761 -10:69480762 -10:68904293 -10:68903282 
 3 -10:59710798 -10:59709795 -10:59141299 -10:59140284 

-1 0 -10:89413685 -10:89412696 -10:88938567 -10:88937567 
 1 -10:79366351 -10:79365358 -10:78897851 -10:78896846 
 2 -10:69458650 -10:69457652 -10:68996645 -10:68995636 
 3 -10:59688007 -10:59687004 -10:59232377 -10:59231363 

 
 
Table 3 – Eigenvalues ( eV) for the modified Hylleraas potential for HCl molecule with and without B and AB flux fields. 

 

m n B = 0; ζ = 0 B = 5 T; ζ = 0 B = 0; ζ = 5 B = 5 T; ζ = 5 

1 0 -3:962892968 -3:962876513 -3:911543641 -3:911526223 
 1 -3:805044609 -3:805027813 -3:756800366 -3:756782607 
 2 -3:656677388 -3:656660250 -3:611292839 -3:611274738 
 3 -3:517046921 -3:517029442 -3:474300445 -3:474282003 

0 0 -3:964628515 -3:964612149 -3:921703713 -3:921686402 
 1 -3:806674860 -3:806658153 -3:766347643 -3:766329991 
 2 -3:658210692 -3:658193643 -3:620275626 -3:620257633 
 3 -3:518490814 -3:518473424 -3:482762382 -3:482744047 

-1 0 -3:962892968 -3:962876683 -3:928507319 -3:928490109 
 1 -3:805044609 -3:805027984 -3:772740459 -3:772722907 
 2 -3:656677388 -3:656660421 -3:626290068 -3:626272175 
 3 -3:517046921 -3:517029612 -3:488427730 -3:488409495 

 
 

Molecules ( )eD eV  1Aϑα
°

− − 
 
 

 ( )er A   ( )μ MeV  

HCl 4.6190309050 1.86770 1.2746 0.09129614886 
CO 11.225600000 2.29940 1.1283 0.63906749030 
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Figure 1 – Variation of the partition function ( )Z β versus temperature (β )  
for selected heteronuclear diatomic molecules. 

 
 

 
 

Figure 2 – Variation of the mean energy ( )U β versus temperature ( β )  
for selected heteronuclear diatomic molecules. 

 
 

 
 

Figure 3 – Variation of the specific heat ( )C β versus temperature ( β )  
for selected heteronuclear diatomic molecules. 

 
 

Figure 4 – Variation of the free energy ( )F β versus temperature ( β )  
for selected heteronuclear diatomic molecules. 

 
 

 
 

Figure 5 – Variation of the entropy ( )S β versus temperature (β )  
for selected heteronuclear diatomic molecules 

 
 
5 Conclusion 
 
This work presents an analytical solution to 

the Schrödinger equation (SE) with the modified 
Hylleraas potential using the Nikiforov-Uvarov 
(NU) method, incorporating external magnetic 
and Aharonov-Bohm (AB) flux fields. The study 
calculates non-relativistic energy eigenvalues for 
various vibrational and magnetic quantum 
numbers and examines the influence of these 
fields on the energy spectra of heteronuclear 
diatomic molecules like CO and HCl. Degeneracy 
is observed in the absence of external fields, 
while the application of a magnetic field increases 
energy eigenvalues, breaking degeneracy but 

leaving some quasi-degeneracy. The AB field has 
a stronger effect, further reducing degeneracy and 
raising energy levels compared to the magnetic 
field. When both fields are applied, their 
combined impact exceeds their individual effects. 
The thermodynamic properties of the system, 
including the partition function, mean energy, 
specific heat capacity, free energy, and entropy, 
are analyzed and visualized, providing deeper 
insights into molecular behavior under external 
fields. This study establishes a foundation for 
exploring various quantum chemistry topics, 
illustrating how external fields can significantly 
influence molecular properties. The findings have 
implications for quantum technology development 
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Figure 5 – Variation of the entropy ( )S β versus temperature (β )  
for selected heteronuclear diatomic molecules 
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combined impact exceeds their individual effects. 
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including the partition function, mean energy, 
specific heat capacity, free energy, and entropy, 
are analyzed and visualized, providing deeper 
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illustrating how external fields can significantly 
influence molecular properties. The findings have 
implications for quantum technology development 
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and molecular physics, enabling advancements in 
field-tunable molecular systems for quantum 
sensors, quantum information processing, and 
advanced material design. Future research could 
extend these methods to more complex molecular 
systems and investigate the effects of diverse 
external field configurations. 
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and molecular physics, enabling advancements in 
field-tunable molecular systems for quantum 
sensors, quantum information processing, and 
advanced material design. Future research could 
extend these methods to more complex molecular 
systems and investigate the effects of diverse 
external field configurations. 
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