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In this work, the Gauss-Bonnet model of modified gravity is investigated, where some arbitrary function 
G is added to the Einstein-Hilbert action. This theory explains the accelerated expansion of the Universe. 
In this work. The article proposes F(R, G) = f(R) + η(G) modified gravity, which considers two gravities 
f(R) and η(G), where f(R) is a function from the Ricci scalar, η(G) is a function from the Gauss-Bonnet 
invariant. The model is considered in a flat, isotropic and homogeneous Universe. As a result of some 
mathematical formalism, the dependence of the function f(R) on the scalar of curvature R and on t time is 
found. Geometric and dynamic parameters of the cosmological model F(R, G) = f(R) + η(G) were analyzed. 
Equations of motion and cosmological parameters, such as the Hubble parameter and scale factor, were 
obtained for the investigated model. Analyzing the obtained solutions of the scale factor, it was shown that 
the model describes the exponential acceleration of the Universe. Thus, it was found that the cosmological 
model under study has a similar interpretation to the de Sitter cosmological model. 
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1. Introduction

Many astronomical studies have shown that the 
Universe is currently expanding at an accelerated rate 
[1]-[5]. Most cases of general relativity (GR) are 
generalized by incorporating scalar curvatures, 
higher-order curvature terms, and also connections 
with dynamic scalar fields [6], [7]. Consequently, 
there is growing interest in studying modifications 
and generalizations of Einstein's theory. Various 
approaches and models exist for investigating the 
expansion of the Universe. Effective cosmological 
results can be obtained using modified theories of 
gravity. Various modified models and gravitational 
theories have been proposed, including f(R) gravity 
[8]-[10], )(Gf gravity [11] , scalar-tensor theory 
[12], ),( TRf  gravity [13] and ),( GRf  gravity [11], 
where R  is the Ricci scalar, G  is the Gauss-Bonnet 
invariant, T  is the torsion. 

f(R) gravity, a kind of modified theory of gravity 
that generalizes Einstein's general theory of 
relativity. Over the past few decades, various forms 
of the )(Rf  function have been investigated. 

Among these functions there are quite viable ones 
that correctly describe cosmological dynamics, a 
smooth transition between different cosmological 
epochs [14]. The cosmological interest in )(Rf
gravity arises from the fact that these theories 
naturally demonstrate the late-time accelerated 
expansion of the Universe without the need for matter 
fields like dark energy. In a study by [15], a scheme 
for cosmological reconstruction of )(Rf  gravity is 
presented. Among other existing theories, it can be 
shown that gravitational models based on )(Rf
describe the transition from a matter-dominated 
phase to an accelerated phase [16]. However, it is 
well-known that )(Rf gravity has some 
imperfections. For instance, at the nonlinear level, 
issues related to curvature singularities arise [17]. As 
a result of the classical GRT tests obtained, most of 
the proposed )(Rf  models are excluded in the 
limitations of the Solar System regime. In order to 
circumvent these imperfections, gravity )(Rf  has 
been expanded to take into account additional scalars 
in the Einstein-Hilbert action. In this regard, an 
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optimistic alternative arises, such as ),( GRf  gravity 
[18-24]. The stability of cosmological solutions in 

),( GRf  gravity is discussed in [25]. Theories like 
),( GRf satisfy the constraints of the Solar System 

[26]. 
In the Gauss-Bonnet theory of gravitation the 

Einstein action is modified by the function )(Gf , 
where an arbitrary function G  is a quadratic 
invariant of the Gauss-Bonnet equation [11]. It is 
known that G  is a topological invariant in four 
dimensions, which participates in the formulation of 
quantum field theory in curved space. The invariant 
G  arises under gravitational influences containing 
second-order curvature invariants. The Gauss-
Bonnet function )(Gf  is added to the gravitational 
interaction to explain the accelerating expansion of 
the Universe at late times [27]. Moreover, such 
modified Gauss-Bonnet gravity can describe the 
transition from deceleration to acceleration as well as 
the phantom gap crossing. One can search for more 
serious restrictions on its form by comparing the 
theory with observational data. Models containing 
the Gauss-Bonnet invariant have attracted interest 
because of the ability of G  to simplify the dynamics 
of the system. In recent years, modified theories 
associated with the topological Gauss-Bonnet term 
have been studied in depth [28]. In [29], a class of 
Horndeski Lagrangian, with a scalar k-essence field 
associated to the Gauss-Bonnet term, is considered. 
A reconstruction method is proposed to derive viable 
models in accordance with cosmological data. The 
Gauss-Bonnet invariant is also considered in the 
CDM cosmological model [30]. It is shown that the 
 CDM model can be explained in such theories, 
where the problem of the cosmological constant is 
explained in the form of a modified of the 
cosmological constant. 

In this paper, the evolution of the Universe is 
investigated by considering two gravity separated 
functions, gravity )(Rf  and )(G , where )(Rf  is 
a function of the Ricci scalar R and )(G  is a 
function of the Gauss-Bonnet invariant G  [31]-[35]. 
This theory without any cosmological constant can 
predict different phases of the evolution of the 
universe [36], [37]. The G  in the curvature invariant 

corresponds to the coevolution of the early Universe. 
Moreover, this theory describes accelerating waves 
of celestial objects. It also effectively explains the 
transition from the deceleration phase to the 
acceleration phase [38]. Thus, it is possible to 
construct feasible and consistent modified models 
using )(Gf  [11], [39]. Section 2 presents the 
mathematical formalism of the cosmological model 

),( GRF  of gravity. The equations of motion were 
derived and solutions of the unknown functions 

)(Rf , )(G  and the Hubble parameter, scale 
factor, were shown. In Sec. 3, cosmological 
parameters such as pressure, energy density, and state 
parameter are found and their graphical behavior is 
shown. 

2. The cosmological model of ),( GRF  gravity

Consider the following action for ),( GRF
gravity  

,),(
2
1= 4

2 xdLGRF
k

gS m 



         (1) 

where g  is the metric determinant, mL  – standard 

matter Lagrangian, k2 = 8π NG , NG  is the Newtonian 
gravitational constant and the speed of light c  is 
assumed to be 1. Now it is necessary to bring 
Lagrangian into canonical form 

),,,,,,( tGGRRaaL   from the action (1) to obtain
the equation of motion. Here )(taa   is the scale 
factor, dependent on cosmological time t  and 
defined in the Friedman-Roberston-Walker metric 
(FRW)  

,)()(= 222222 dzdydxtadtds      (2) 

Next, using the Lagrange multiplier method (see 
for example [40]), we can set R  and G  as 
constraints on the dynamics. To eliminate high-order 
derivatives, we select a suitable Lagrange multiplier 
and integrate by parts. We rewrite action (1) for flat 
FRW metric as follows: 

,246)()(= 3
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here the Ricci scalar R  and the Gauss-Bonnet 
invariant G  are defined as follows in terms of the 

Hubble parameter 
a
aH


=  for FRW metric:

,126= 2HHR     (4) 

.)(24= 22 HHHG    (5) 

At (4)   and   are the Lagrangian multipliers 
that can be directly found by varying with respect to 
R  and G , giving ,=,= GRf  respectively. 
Where the indices denote derivatives with respect to 

the given variables .)(=,)(=
dG

Gd
dR

Rdff GR
   

The equation of action (4) is reduced to the 
following form  

 .2466= 232233334
GGRRR aaGafaafaaRfaafaxdS         (6) 

According to the equation of action (4), we write 
the Lagrange function as 

3 3 3 2

2 3 3

= 6

6 8 .
R RR

R G GG

L a f a a Rf a aRf

aa f a G a G



 

   

  


 

  (7) 

The Euler-Lagrange equation is written in the 
following form 

0,=














q
L

dt
d

q
L


 (8) 

Also from energy condition 

0,=Lq
q
LEL 










 


 (9) 

where GRaq ,,=  are generalized variables. 
For the FRW metric the pressure p  and the 

density   are defined as follows 

),2(3= 2 HHp    (10) 

23= H .            (11) 

Using equation (5) and (7) we find 

 ,)(16)(8)(24
2
1= 22 HHGHGHfRfRHGRff
f

p GGtGGtRRRRGR
R

           (12) 

 .246
2

1=3= 32
GGRRGR

R

GHfRHGRff
f

H          (13) 

Adding up equations (13) and (14), we obtain the following equation 

      .8444
2

1= 22222
GGGGRRGGRRRGGRR

R

GHHGHfRGHfRGHfRH
f

H     (14) 

Let's denote  

,4= 2
GGRR GHfRA      (15) 

then 

 2 2 2

2

= 4

( 4 ) 8 .
RRR GG
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A R f H G
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(16)
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Using (18) and (19) equations, we obtain 
equation (17) in a simplified form  

 ,
2
1= AHA
f

H
R

   (17) 

To solve (20) the differential equation, consider 
the following case  

.
2

= AfR                 (18) 

Then equation (18) is reduced to a differential 
equation with separated variables  

,== 1C
A
AHH
        (19) 

where constC =1 . 
The solution of the differential equation (22) can

be found in the following form 

𝐻𝐻 𝐻 𝐻𝐻(����) − 𝐶𝐶�,        (20) 

where 0t - present current time and t variable time, 

those tt 0 ,  

.= )( 01 ttCeA        (21) 

According to (18) and (21) Rf  is written as 

.
2

)(
=

01 ttef
C

R



          (22) 

Considering that   RRtR fRf =  and 

GGtG G =)( , where t  in the index means the time
derivative, then the equation (15) can be written in 
the following form  

.)(=
4

)(2
2 tG

tRR

H
ff 

 (23) 

Integrating equation (23), we obtain the 
following  

.
)8(

)(
=

2
1

0

01
1 dt

Ce

tteC
tt

C

G



 



            (24) 

Next, consider the value of the equation for Rf . 
Substituting (20) into (2) we get the quadratic 
equation 

     0.=26212 11 /12

1
/1 RfCf C

R
C

R     (25) 

Denoting   .2= 1/1 C
Rfb   we get the quadratic 

equation 

0,=
12

)(
2
12 2

11
2 RCbCb 






    (26) 

Solving this equation we get  

.
4
12

34
12= 111,2 





  CRCb          (27) 

Considering (22) and (27) we write the equation 
for Rf   

.
4
12

32
1

4
1

2
1=

1

11

C

R CRCf










        (28) 

Since the solution of (24) and (28) equations is 
complex, consider a special case for 1=1 C  and 
obtain solutions of integral equations in the following 
form  

  18
1=
0 

 ttG
e

  (29) 

 and 

.8112
24
1

8
5=)(  RRf               (30) 

The derivatives of functions )(G  and )(Rf  on 
time t  are defined as  

,= GG
       (31) 

.= Rff R
 (32)
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Then considering (20), we write the derivative of 
the function G  and R  in (4), (5) by time t   

𝐺𝐺� � ���𝑒𝑒�(����) + 𝑒𝑒(����)� × 

× �𝑒𝑒(����) + �𝑒𝑒(����) + ���� +

+2��𝑒𝑒(����) + �����𝑒𝑒(����) + 2𝑒𝑒�(����)�      (33)

   .3024= 002 tttt eeR    (34) 

Substituting equations (29) and (33) into (31) we 
obtain the function   dependent on t   

     .15
2

334=)( 00203 tttttt eeet           (35) 

Using equations (22) and (34) we obtain the 
function f  dependent on t   

   .
2

154=)( 0203 tttt eetf               (36) 

3. Cosmological parameters

Cosmological parameters, global parameters of 
the Universe that characterize its composition and 
dynamics, are determined according to observational 
data or derived from them. The main cosmological 
parameters considered in this paper are the Hubble 
parameter, the scale factor, and the equation of state 
parameter relating its pressure and density. The most 
accurate measurements of the global parameters of 
the Universe are obtained from observed data on 
supernovae of type Ia stars and from the anisotropy 
characteristics of the relic radiation. In addition, data 
from the cosmic distance scale are used to measure 
the Hubble parameter. 

Using equations (18) we can find the scale factor 
a  in the following form  

    .= 2010exp CttCttea    (37)

Figure 1 – Variation of scale factor a  over time t  at 10=1 C  (blue line),

1=1 C  (red line), 0=1C (blue line), 1=1C  (gray line),

10=1C  (yellow line), de Sitter model (dashed line) 
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Figure 2 – Variation of scale factor a  over time t  at 10=1 C  (blue line),

1=1 C  (red line), 0=1C (blue line), 1=1C  (gray line),

10=1C  (yellow line), de Sitter model (dashed line) 

The cosmographic evolution of the scale factor 
can be seen in Figure 1, at 0=2C . In Figure 1 we 
can observe the evolution of the scale factor at early 
times for the cosmological model under study. We 
also compare the behavior of these graphs with the 
behavior of the de Sitter model graph, since the de 
Sitter model also describes the exponential expansion 
of the Universe. Epochs from the Big Bang 4310  s 
to the quark confinement 410  s, including the 3610  
s inflation stage, are considered. The graph showed 
that in this time interval all values are stationary and 
have larger values of the scale factor relative to the 
Einstein Universe. At large negative values of 1C  the 
values of the scale factor are larger. 

Figure 2 shows the variation of the plots at later 
times. As can be seen, the scale factor of the Gauss-
Bonnet model at 1;0;110;=1 C  grows 
exponentially faster compared to the de Sitter model. 
Figure 2 shows that at large positive values of 1C  the 
stationary period is longer than at smaller and 
negative values. 

The expansion of the Universe is classified using 
different phases of the   state parameter. The state 
parameter  is an immeasurable quantity and 
defined as 

,=


 p
       (38) 

where p  is the pressure and   is the energy density 
of the matter distribution, equal to the ratio of the 
total average density of the Universe to the critical 
density. 

p  and   can be written in the following form 

 
3383=

0
0

022  

 
tt

tt

e
eep tt           (39) 

 and 
  3.363=

0
002  


tt

e
ee tttt   (40) 

Substituting (39), (40) into the equation of state 
(38), we obtain    

 
.

313

21=

0

0

0

2

tt
tt

tt

e
e

e







          (41) 

The graphical result of p  and   can be seen in 
the figures below  
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Figure 3 – Change of pressure p over time t 

Figure 4 – Change of energy density ρ over time t 

As can be seen in Figure 3, the pressure p  has a 
negative value, which indicates the expansion of the 
Universe. Figure 4 shows that the energy density has 
a positive value.  

In the decelerated phase, when cold dark matter 
or dusty liquid dominates, the state parameter is 
defined as 0= , and in the radiation epoch 

1/3<<0   and in the rigid liquid  = 1. In the 
accelerated phase at the cosmological constant or in 

the vacuum era 1=   , in the quintessence and 
quintom epoch 1/3<<1    

Figure 5 shows the graphical behavior of the state 
parameter of the investigated model of modified 
Gauss-Bonnet gravity. This figure clearly shows that 
the parameter of the equation of state changes tending 
to a negative value in the range 01   , which 
shows good agreement with observational data of 
type Ia supernovae.  

. 
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Figure 5 – Change of state parameter ω over time t 

4. Conclusion

In this paper the problem of cosmic acceleration 
in modified )(Rf , )(G  Gauss-Bonnet gravity is 
investigated. The dependences of the physical 
quantities )(Rf , )(G , the scale factor, and the 
Hubble parameter on the cosmological time t  are 
obtained. We found the function )(Rf  dependent on 
the curvature scalar R . We also carried out a 
physical analysis of the obtained solution of the scale 
factor and found that this model has an adequate 

cosmological interpretation similar to the de Sitter 
cosmological model. The found values of the Hubble 
parameter and scale factor describe the exponential 
expansion of the Universe, which is shown in Figure 
2. Figure 5 shows that the state parameter starts near
zero at the beginning of cosmic time, i.e., the
Universe is dominated by matter. Then at the end of
cosmic time it progresses to a near negative value of
-1, which exhibits a vacuum era-like behavior. As a
result, our research model is realistic. Thus, it is
shown that this modified Gauss-Bonnet gravity
model describes the acceleration of the Universe.
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