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Real-time small object detection with YOLOv8n/8s  
and YOLOv11n/11s models in complex natural landscapes 

Unmanned Aerial Vehicles (UAVs) are increasingly employed for real-time object detection in critical appli-
cations such as security surveillance, disaster response, and environmental monitoring. However, accurate 
detection in UAV imagery remains challenging due to small target sizes, cluttered backgrounds, and vary-
ing environmental conditions. This study evaluates the performance of YOLOv8n/v8s and YOLOv11n/11s 
models for human detection in UAV-captured imagery across diverse natural landscapes. To ensure practi-
cal deployment in resource-constrained environments, the models were implemented on a Raspberry Pi 5 
using the OpenVINO framework. Experimental results show that both YOLO series achieve comparable 
detection accuracy in the range of 80–82%, with YOLOv8n and YOLOv11n demonstrating the highest 
processing speeds of 10.50 and 11.04 frames per second (FPS), respectively. These findings confirm the 
feasibility of using lightweight YOLO models for real-time human detection on embedded systems. The re-
sults highlight the potential of integrating edge AI and UAVs for autonomous, on-site monitoring in remote 
or complex terrains, offering scalable solutions for intelligent aerial surveillance.
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1 Introduction

Unmanned Aerial Vehicles (UAVs), commonly 
known as drones, are aircraft that operate without di-
rect human control, relying on remote radio signals 
or autonomous programming. In recent years, they 
have been widely adopted in both civilian and mili-
tary sectors, with applications in agriculture, aerial 
photography, public safety, ecological protection, 
and military operations. Their increasing popularity 
stems from key advantages such as compact size, 
versatility, and cost-effectiveness [1-3]. 

Despite these advancements, detecting small ob-
jects using UAVs in complex natural environments 
remains a major challenge. High-altitude perspectives 
reduce objects to a few pixels, making feature ex-
traction difficult for YOLO models. Scale variations, 
background clutter, and occlusion further complicate 
detection, as small objects are often obscured by veg-
etation, shadows, or other elements. Additionally, dy-
namic conditions like lighting changes, motion blur, 

and atmospheric disturbances impact image clarity, 
further degrading detection performance [3-9].

To solve the above-mentioned problems au-
thors [1] for small object detection proposed UAV-
YOLOv8 model with Wise-IoUv3, BiFormer at-
tention, and the Focal FasterNet Block, resulting in 
high detection accuracy. In [2] authors, optimized 
YOLOv8 variant achieving good mAP@0.5 while 
reducing computational complexity. For structured 
environments, WeiSun et.al introduced the RSOD 
algorithms[3] an improved YOLOv3-based model 
for UAV traffic monitoring with VisDrone-Det2018 
and UAVDT datasets. To expand object detection 
beyond the visible spectrum, Jiang et.al. proposed a 
thermal infrared (TIR) detection framework [4] us-
ing YOLO models for FLIR cameras. The YOLOv5s 
model reached great mAP at 50 FPS, proving effec-
tive under low-visibility conditions. Chang et.al. ex-
plored enhancements for high-altitude small object 
detection [5], where SPD-convolution, coordinate 
attention, transposed convolution, and Alpha-IoU 
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loss were incorporated, improving precision, accura-
cy, and recall in YOLOv5s. Han et.al. designed, the 
Senselite model [6] with GSConv, SlimNeck, and a 
squeeze-and-excitation mechanism, reaching to high 
mAP@0.5, surpassing YOLOv5 in computational ef-
ficiency. For urban road monitoring, Wang et.al. op-
timized YOLOv9-based model [7], which developed 
with SCRCONV, SPPELANBRA, and Inner-MP-
DIOU loss, achieving state-of-the-art results on the 
CICVAC dataset. Zhang et.al. introduced, RTS-NET 
a real-time detection network [8] for UAV patrols, 
achieving superior mAP and 163.9 FPS, prioritizing 
real-time efficiency. Zheng et al. analyzed YOLO-
based deep learning models [9] across multiple appli-
cations, including agriculture, fire detection, ecology, 
marine science, and UAV navigation. Muzammul 
et.al. presented, a quantum-inspired multi-scale de-
tection model [10] for ultra-small object detection, 
incorporating sub-pixel convolution, adversarial 
training, and self-supervised learning. These above 
discussed articles exhibited relatively good efficiency 
in small object detection, however these results can 
be further improved in terms of speed and accuracy.

In this article, we propose an advanced real-time 
object detection model for UAV-based surveillance 
using the latest YOLOv8n/v8s and YOLO 11n/11s, 
integrated with the OpenVINO framework on Rasp-
berry Pi 5 to optimize speed, accuracy, and efficiency 
across diverse environments. The latest YOLO ver-
sions [11] provide significant advancements in preci-
sion, processing speed, and adaptability for various 
detection tasks, and we believe that the proposed 
integrated model can further enhance computational 
efficiency.

The article is structured as follows: Section 2 
introduces the YOLO models and their architecture, 
highlighting key improvements and design choic-
es. Section 3 describes the datasets and processing 
methods, including data collection, and preprocess-
ing techniques. Section 4 discusses the detection 
model, detailing training strategies and optimization 
techniques. Finally, Section 5 presents the results, 
analyzing model performance in terms of accuracy, 
efficiency, and real-time applicability in UAV-based 
object detection.

2 Background

2.1. YOLO series
This section presents an overview of the most 

widely used YOLO object detection models − 
YOLOv8n/s, YOLOv11n/s − developed in recent 
years [11,12].

YOLOv8 represents the latest and most advanced 
iteration in the YOLO series, offering five different 
models optimized for various scales: YOLOv8n, 
YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. 
As depicted in Figure 1, the architecture of YOLOv8 
is composed of three core layers: the backbone, the 
neck, and the detection head [11,12]. 	

The Backbone Layer is built on CSPDarknet53 
[12], leveraging five down sampling stages to ex-
tract multi-scale features. Unlike previous YOLO 
versions, YOLOv8 replaces the conventional Cross 
Stage Partial (CSP) module with the C2f module, 
which incorporates both dense and residual connec-
tions, improving gradient flow and feature represen-
tation. Additionally, it integrates the Spatial Pyramid 
Pooling Fast (SPPF) module, enabling enhanced 
multi-scale feature extraction while reducing compu-
tational complexity and inference latency. This com-
bination ensures a lightweight yet powerful back-
bone capable of detecting small and large objects 
efficiently. 

The Neck Layer utilizes a fusion of Feature Pyra-
mid Network (FPN) [13,14] and Path Aggregation 
Networks (PANet) to enhance feature propagation 
and multi-scale detection. FPN’s top-down structure 
improves the transmission of high-level semantic 
features to lower layers, aiding small object detec-
tion. PANet strengthens feature reuse with a bottom-
up pathway, enriching the spatial information flow. 
Though PANet increases computational cost, its in-
tegration with C2f modules balances efficiency and 
performance, allowing YOLOv8 to capture objects 
of varying scales with high precision. 

The Detection Head Layer adopts a decoupled 
head structure, separating classification and regres-
sion tasks for better optimization. YOLOv8 moves 
away from traditional anchor-based methods, im-
plementing the Task-Aligned Assigner [15], which 
dynamically assigns positive and negative samples 
during training, improving detection accuracy. Clas-
sification is handled using binary cross-entropy loss 
(BCE Loss), while bounding box regression benefits 
from distribution focal loss (DFL) [16] and Complete 
Intersection over Union (CIoU) [17] loss. These loss 
functions refine object localization by penalizing 
misaligned bounding boxes and improving conver-
gence speed. 

One of the features of YOLOv8 is the C2f mod-
ule, which enhances the gradient flow throughout 
the backbone and neck. This is achieved by incor-
porating more skip connections and removing con-
volutions in its branches, taking inspiration from the 
C3 module and ELAN design in YOLOv5. Further-
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more, YOLOv8 introduces a decoupled head that 
separately processes the extraction of target position 
and category information, significantly improving 
detection accuracy. Another important innovation is 
the shift from conventional anchor-based design to 
anchor-free architecture. For classification, YOLOv8 
utilizes VFL loss, while DFL loss and CIOU loss 
are employed for regression tasks [18]. To enhance 
bounding box regression, YOLOv8 employs IoU-

based loss functions [19], which evaluate the overlap 
between predicted and ground truth bounding boxes. 
While standard IoU Loss struggles in cases of non-
overlapping boxes, CIoU mitigates this issue by min-
imizing the normalized distance between box centers 
and incorporating an aspect ratio penalty. This leads 
to faster convergence, superior localization accuracy, 
and improved performance in detecting small and 
fast-moving objects [18,19].

Figure 1 – Structure of YOLOv8 [18]

YOLOv11, the latest version in the YOLO series, 
brings notable advancements in speed, accuracy, and 
feature extraction. Like YOLOv8, the architecture of 
YOLOv11, as depicted in Figure 2, consists of three 
main components: the backbone, the neck, and the 
head.

The backbone is the initial and crucial compo-
nent of YOLOv11, tasked with extracting key fea-

tures from the input image at various scales. YO-
LOv11 incorporates C3K2 blocks, which replace the 
C2f blocks found in YOLOv8 [13]. The C3K2 blocks 
provide a more computationally efficient implemen-
tation of Cross-Stage Partial (CSP) [14]. Additional-
ly, the last two blocks of the backbone are the Spatial 
Pyramid Pooling Fast (SPPF) and Cross-Stage Partial 
with Spatial Attention (C2PSA) [16, 19]. The SPPF 
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block uses multiple max-pooling layers to efficiently 
capture multi-scale features, while the C2PSA block 
integrates an attention mechanism to improve the 
model’s accuracy.

The neck is the second major component of 
YOLOv11. As shown in Figure 2, it includes sev-
eral Conv layers, C3K2 blocks, Concat operations, 
and Upsample blocks, all enhanced by the C2PSA 

mechanism. The neck’s primary role is to combine 
features from different scales and forward them to 
the head for final prediction [20].

The head is the final component of YOLOv11 
and plays an essential role in generating predictions. 
It is responsible for determining the object class, cal-
culating the objectness score, and accurately predict-
ing the bounding boxes for detected objects [21]. 

Figure 2 – Structure of YOLOv11[22]

One of the features of YOLOv11 is the C3PSA 
module, which provides efficient feature extraction 
and an advanced attention mechanism for better ac-
curacy. It adopts an anchor-free design and a refined 
decoupled head for improved localization and clas-
sification. Also, optimized loss functions, including 
VFL and DFL, further enhance precision and stabil-
ity [22].The model is optimized for modern GPUs 
[23,24], boosting speed and reducing latency for 
fast, real-time performance. This makes YOLOv11 
perfect for applications like video surveillance and 
autonomous systems [25,26] that need quick and ac-
curate object detection.

3 Dataset and processing

3.1. Image database
In this study, the UAVSOD-10 dataset was uti-

lized, containing aerial imagery captured by UAVs 

to facilitate small object detection through deep 
learning techniques. The UAVSOD-10 dataset 
contains 844 images and 18,234 annotated instanc-
es, each labeled with horizontal bounding boxes 
(HBB) in VOC format [27]. The image widths 
range from 1,000 to 4,800 pixels, with a resolution 
of approximately 0.15 meters. Scale differences 
[28] in objects of the same or different categories 
are apparent. The width of the smallest object in 
image instance is 9 pixels, the biggest width is 312 
pixels, and the mean width is 74.85 pixels. The im-
ages were captured in a mountainous area of the 
Liuzhi Special Economic Zone, Guizhou Province, 
China. To enhance the model’s generalization abil-
ity and account for various natural conditions, the 
dataset includes images from different types of ter-
rain, such as mountains, forests, and snowfields. 
This approach enables the model to be trained on 
data that represents diverse environments, improv-
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ing its ability to detect people in complex natural 
landscapes [28].

The model was trained using the Roboflow [29, 
30] platform for data annotation. To accelerate learn-
ing, the transfer learning technique was applied, en-
abling pre-trained models to be adapted for the task 
of detecting people in images captured by drones. 
Training was conducted on a system with an Intel 
Core i9 processor [31] and an NVIDIA GeForce 
RTX 4090 GPU [32], providing the necessary com-
putational power for effective training. The train-
ing hyperparameters were as follows: 600 epochs, a 

batch size of 16, and a learning rate of 0.01. Various 
data augmentation techniques, such as rotation, scal-
ing, and brightness variation, were employed to im-
prove the model’s ability to handle different lighting 
conditions and object orientations [32].

Object scales were compared by calculating the 
area ratio of the object bounding box pixels to the 
total image. As shown in Figure 3, the image scale is 
enhanced by segmenting it into pixels within a rect-
angular grid. YOLO models typically process images 
at varying scales, where the images undergo magnifi-
cation ranging from zero to 6x [33]. 

Figure 3 – Examples of images showing aerial photographs taken  
with a drone, at zero and 6x magnification

	

The training set, consisting of 717 images, is 
composed of diverse locations in the suburbs of 
China, including mountainous and forested areas, 
captured at altitudes ranging from 13 to 30 meters. 
The validation set, made up of 84 images, is carefully 
selected to represent a wide range of environmental 
conditions, supporting the model’s generalization 
across different landscapes. The test set, containing 
81 images, is used as a benchmark for evaluating the 
model’s performance in real-world scenarios. The 
dataset is focused on people detection, ensuring pre-
cise and reliable identification from dynamic aerial 
perspectives.

3.2. Performance of YOLOv8/v11
The Raspberry Pi 5 is a powerful single-board 

computer designed for high-performance and re-
al-time processing. It features a 64-bit Broadcom 
BCM2712 processor (Cortex-A76, up to 2.4 GHz) 
and a VideoCore VII GPU (800 MHz), offering sig-
nificant improvements over previous models. With 
4 GB or 8 GB LPDDR4X-4267 RAM, it efficiently 
handles multitasking and large datasets. The PCIe 
2.0 interface supports external accelerator integra-

tion, enhancing data processing capabilities. Despite 
a 5A and 5V power requirement, the Raspberry Pi 
5 remains compact and efficient for various applica-
tions [34-37].

To deploy YOLOv8 and YOLOv11 on Rasp-
berry Pi 5, the trained models were converted into 
OpenVINO-compatible format. Using OpenVINO’s 
Model Optimizer, the best.pt file was transformed 
into an Intermediate Representation (IR) model, op-
timizing it for efficient execution on resource-con-
strained devices. 

OpenVINO (Open Visual Inference and Neu-
ral Network Optimization) is an Intel toolkit that 
optimizes deep learning models for CPUs, GPUs, 
FPGAs, and VPUs. It converts models from frame-
works like TensorFlow and PyTorch into an IR for-
mat using the Model Optimizer, and the Inference 
Engine ensures efficient execution. Integrated with 
Raspberry Pi 5, OpenVINO enhances inference ef-
ficiency, reducing computational overhead and en-
abling real-time processing using its BCM2712 pro-
cessor [38] and VideoCore VII GPU [39]. Figure 5 
shows the object detection system using Raspberry 
Pi5.
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After the model was converted to the OpenVINO 
format, the best_yolov8s_openvino_model was de-
ployed on the Raspberry Pi 5. Test images stored in./
test/images, and their corresponding YOLO-format 
annotations in./test/labels were used for evaluation. 
A Python script on Raspberry Pi 5 handles the en-
tire object detection process : it loads and prepro-
cesses images, performs inference using the YOLO 
model via OpenVINO, and then compares the pre-
dicted bounding boxes with ground truth annotations 
[40,41]. This comprehensive workflow allows for a 
detailed assessment of the model’s accuracy and per-
formance in real-time object detection on resource-
constrained hardware [42].

For each test image, the following steps are per-
formed: the image is loaded into memory, processed 
through the YOLO model to obtain predicted object 
coordinates, and compared with ground truth anno-
tations. Bounding boxes are visualized, with predic-
tions in green and actual annotations in red, provid-
ing a clear assessment of detection accuracy [43,44]. 
The inference time for each image is recorded to 
evaluate real-time performance. Finally, processed 
images with bounding boxes are saved in the. /results 
directory for further analysis. This approach ensures 
a comprehensive evaluation of both detection accu-
racy and processing efficiency.

4 Results 

In this section, we evaluate the performance of 
the YOLO models for addressing the object detec-
tion task in real-time applications. Figure 4 pres-
ents the detection results of the YOLOv8 and YO-
LOv11 models in identifying people from UAV 
imagery under various environmental conditions. 
In Figure 4, the red bounding boxes represent 
manually labeled ground truth annotations, while 
the blue boxes indicate the objects detected by the 
trained models.

The results shown in Figure 4 indicate that the 
detection capabilities of the YOLOv8 and YOLOv11 
models are acceptable and can be applied in various 
environmental conditions. The FPS values for each 
of the tested models are presented in Table 1, en-
abling a comparison of their processing speeds.

As shown in Table 1, the YOLOv8n and YO-
LOv11n models achieve the highest FPS (10.50 and 
11.04 respectively), indicating their acceptable pro-
cessing speed and suitability for real-time detection 
tasks in comparison with other models. Figure 5 pres-
ents the results of the confusion matrics and accuracy 
curves of the YOLOv8n and YOLOv8s models. The 
x-axis represents the true class labels of the samples, 
while the y-axis indicates the predicted results. 

Figure 5 – Human detection system using Raspberry Pi 5
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Figure 4 – Object detection comparison of YOLOv8n/v11n and YOLOv8s/11s models in snow-covered landscapes. Red 
boxes are ground truth labels, blue boxes are detected objects

Table 1 – FPS values of the tested YOLOv8 and YOLOv11 models

Model FPS 
YOLO 11s 5.24
YOLO 11n 11.04
YOLO v8s 4.95
YOLO v8n 10.50
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(a) (b)

(c) (d)

Figure 5 (a, c) – YOLOv8n/s confusion matrix; (b, d) – Accuracy curve

The confusion matrices (a) and (c) show that YO-
LOv8n detects 96 people, with 17 background and 9 
people misclassified, while YOLOv8s identifies 93 
people, with 14 background and 12 people misclassi-
fied. The accuracy curves (b) and (d) depict the train-
ing process over 100 epochs, showing a quick initial 
improvement before gradually stabilizing around 
80%. Figure 6 presents the results of the confusion 
matrics and accuracy curves of the YOLOv11n and 
YOLOv11s models.

The confusion matrics (a) and (c) present that 
YOLOv11n recognizes 94 people and YOLOv11s 
recognizes 95, with 19 and 22 background instanc-
es as people and 11 and 10 people as background, 
respectively. The accuracy curves (b) and (d) show 
training progress over 100 epochs, with accuracy 
stabilizing above 80% after 80 epochs. Figure 7 pro-
vides a comparison of the efficiency of YOLOv8n/s 
and YOLOv11n/s models, showcasing their perfor-
mance in terms of accuracy and processing speed.
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(a) (b)

(c) (d)

Figure 6 (a, c) – YOLOv11n/s confusion matrix; (b, d) – Accuracy curve

Figure 7 – Efficiency Comparison of models YOLOv8/11
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Figure 7 demonstrates that YOLOv8n and YO-
LOv11n achieve the highest FPS and accuracy com-
pared to the other evaluated models. Meanwhile, 
YOLOv8s and YOLOv11s exhibit slightly lower 
FPS but maintain competitive accuracy, balancing 
speed and precision in object detection.

5 Conclusion

In this article, we have evaluated the performance 
of YOLOv8n/v8s and YOLOv11n/11s models for 
human detection in UAV-captured imagery across 
diverse natural landscapes. The results showed that 
both YOLO series achieved comparable accuracy 
between 80% and 82%, with YOLOv8n and YO-
LOv11n demonstrating the highest FPS. These mod-
els exhibited higher efficiency, balancing processing 
speed and detection accuracy for real-time UAV ap-
plications. Their successful deployment on a Rasp-

berry Pi 5 using the OpenVINO framework con-
firmed their feasibility for real-time object detection 
in resource-constrained environments. 

Future work includes integrating YOLOv8n and 
YOLOv11n models with FPGA to enhance perfor-
mance, accuracy, and efficiency for real-time object 
detection while optimizing computational speed and 
power consumption for UAV applications. 
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