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This study explores the elastic scattering of protons on the 7Li nucleus within the framework of the optical 
model using the Full-Wave Method (FWM). The approach is based on a high-precision numerical solution 
of the radial Schrödinger equation, incorporating a microscopic folding potential derived from the M3Y 
nucleon–nucleon interaction and the nuclear matter density distribution. An imaginary component of the 
optical potential, parameterized in Woods–Saxon form, is included to simulate absorption effects due to 
open inelfastic channels. Numerical simulations are implemented in Python using a 6 to 8 order Runge–
Kutta method to ensure computational accuracy and stability. The resulting phase shifts, scattering ampli-
tudes, and differential cross sections are calculated for proton energies in the range of 3.0 to 5.5 MeV and 
compared with experimental data measured at the Van de Graaff accelerator. The analysis reveals system-
atic overestimations of the differential cross section at both forward and backward angles and emphasizes 
the necessity of including the imaginary part of the potential and increasing the number of partial waves to 
improve agreement with observations.
The results demonstrate that the Full-Wave Method provides a physically consistent description of the 
elastic scattering process and offers a solid foundation for further theoretical refinement and experimental 
validation in light nuclear systems.
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1 Introduction 

The elastic scattering of protons on the 7Li 
nucleus represents a key process for investigating the 
structure of light nuclei and understanding the 
underlying mechanisms of nuclear interaction. Light 
nuclei such as 7Li serve as ideal systems for testing 
nuclear models due to their relatively simple 
structure and the availability of precise experimental 
data. In this context, studying scattering processes 
involving protons provides valuable information on 
the spatial distribution of nuclear matter, phase shifts, 
and interaction potentials [1, 2]. 

A critical aspect of nuclear reaction analysis lies 
in the application of microscopic methods that 
connect observable scattering parameters to the 
fundamental nucleon–nucleon interaction. One such 
approach is the Full-Wave Method (FWM), which is 
based on the numerical solution of the radial 
Schrödinger equation for the proton–nucleus system. 

This method employs a microscopic folding 
potential, such as the M3Y interaction [3], derived 
from realistic effective nucleon–nucleon forces and 
nuclear density distributions [4, 5]. The use of such 
models enables detailed calculation of phase shifts, 
scattering amplitudes, and differential cross sections 
[6, 7]. 

The motivation for this study arises from the need 
to produce more accurate theoretical predictions that 
can be reliably compared with experimental data. In 
particular, the ⁷Li nucleus has been extensively 
studied [8, 9], but several aspects of its structure and 
reaction dynamics remain insufficiently understood. 
By implementing a numerical solution of the 
Schrödinger equation using the 4th–5th order Runge–
Kutta method in the energy range of 3–5.3 MeV, this 
study aims to obtain improved theoretical cross 
sections. Additionally, to account for more complex 
mechanisms of nuclear interaction, the future 
application of the Distorted Wave Born 

Approximation (DWBA) is proposed [10, 11]. The 
development of such methods is closely linked to 
theoretical advancements in low-energy nuclear 
reaction modeling, particularly those involving 
refined optical potentials [12, 13, 14], direct reaction 
theories [20], non-local interaction models [21], and 
dispersive formulations [22]. Optimization 
techniques, such as χ²-minimization implemented 
using Python solvers like solve_ivp, are also 
considered [23]. 

The main objective of this study is to refine the 
parameters of the nuclear optical potential and to 
investigate the structure of the ⁷Li nucleus by 
comparing theoretical predictions with experimental 
results. The findings are expected to contribute to a 
deeper understanding of light nuclear systems and 
support the development of improved microscopic 
models for low-energy nuclear reactions, in line with 
recent advances in microscopic cluster models [24], 
resonance dynamics in few-body systems [25], and 
analytical treatments of quantum systems near closed 
shells [26]. 

2 Theoretical method 

The study of nuclear reactions requires the use of 
various methods to describe the interactions between 
particles and the nucleus. The following methods 
were used in this study: 

2.1 Full-Wave Method. 
The full wave method uses the full Schrödinger 

equation for nuclear interactions and is applied to 
multi-channel reactions. The basic equation is: 

�2μ
ℏ2

(∇2 + 𝑘𝑘𝑘𝑘2) − 𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟)�Ψ(𝑟𝑟𝑟𝑟) = 0 (1)

2.3 Potentials used in the full wave method 
(FWM) 

2.3.1 Microscopic potential M3Y. 
The microscopic folding potential M3Y is an 

effective nucleon-nucleon interaction derived from 
the matrix elements of the Goldstone method and 
developed to describe nuclear reactions including 
elastic scattering, nuclear fusion, and dissociation of 
cluster structures. 

1. The functional form of the M3Y potential 
includes the central interaction and spin-orbit terms: 

𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟𝑟𝑟) = 𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒−μ𝑟𝑟𝑟𝑟 + 𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒−λ𝑟𝑟𝑟𝑟 (2)

where: 𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸– interaction amplitude parameters 
(MeV), 𝜇𝜇𝜇𝜇 и 𝜆𝜆𝜆𝜆 – interaction ranges (fm), 𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 =
7999 MeV μ = 4.0 fm−1 represent the medium-
range attraction, 𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸 = −2134 MeV , λ = 2.5 fm−1 
correspond to the short-range repulsion [3]. 

2. Effective folding potential: 

𝑉𝑉𝑉𝑉fold(𝑟𝑟𝑟𝑟) =

= �ρ𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟′)ρ𝐵𝐵𝐵𝐵(𝑟𝑟𝑟𝑟′′)𝑉𝑉𝑉𝑉M3Y(|𝑟𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑟′|) 𝑑𝑑𝑑𝑑𝑀𝑟𝑟𝑟𝑟′ 𝑑𝑑𝑑𝑑𝑀𝑟𝑟𝑟𝑟′′ (3)

where: 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴 и 𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵– densities of interacting nuclei, 
values taken from [4]. 𝑉𝑉𝑉𝑉M3Y(|𝒓𝒓𝒓𝒓 − 𝒓𝒓𝒓𝒓′|) – basic NN-
interaction. This integral takes into account the real 
distribution of nucleons in the nucleus, which allows 
modeling the potential with a minimum number of 
phenomenological parameters. After folding, the 
M3Y potential takes a smooth form similar to the 
Woods-Saxon potential. The paper [3] provides 
typical parameters for light nuclei that we used: 

𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟) =
𝑉𝑉𝑉𝑉0

1 + ex p �𝑟𝑟𝑟𝑟 − 𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉
𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉

�
(4)

2.3.2 Optical potential and its relationship with 
microscopic potential 

The microscopic potential gives us only the real 
part of the interaction, but to describe the real data it 
is necessary to take into account the inelastic 
processes that are responsible for the absorption of 
the wave (transitions to excited states, reactions with 
nuclear breakup, etc.). 

Therefore, we wrote the optical potential as: 

𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟) = 𝑉𝑉𝑉𝑉M3Y(𝑟𝑟𝑟𝑟) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟) (5)

where the real part VM3Y(r) was taken from the work 
[3]: 

Depth of potential: V0= 55 MeV, potential well 
radius: 𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉 = 1.25𝐴𝐴𝐴𝐴1/𝑀 fm where A=7 (mass number 
of the nucleus ⁷Li), Substituting this into the formula 
gives: 𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉 ≈ 2.0 fm, diffusion parameter: 𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉 =
0.65 fm, and the values for the imaginary part W(r) 
in the form of a Woods-Saxon potential, which is 
parameterized by the absorption effects, taken from  
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1 Introduction 
 
The elastic scattering of protons on the 7Li 

nucleus represents a key process for investigating the 
structure of light nuclei and understanding the 
underlying mechanisms of nuclear interaction. Light 
nuclei such as 7Li serve as ideal systems for testing 
nuclear models due to their relatively simple 
structure and the availability of precise experimental 
data. In this context, studying scattering processes 
involving protons provides valuable information on 
the spatial distribution of nuclear matter, phase shifts, 
and interaction potentials [1, 2]. 

A critical aspect of nuclear reaction analysis lies 
in the application of microscopic methods that 
connect observable scattering parameters to the 
fundamental nucleon–nucleon interaction. One such 
approach is the Full-Wave Method (FWM), which is 
based on the numerical solution of the radial 
Schrödinger equation for the proton–nucleus system. 

This method employs a microscopic folding 
potential, such as the M3Y interaction [3], derived 
from realistic effective nucleon–nucleon forces and 
nuclear density distributions [4, 5]. The use of such 
models enables detailed calculation of phase shifts, 
scattering amplitudes, and differential cross sections 
[6, 7]. 

The motivation for this study arises from the need 
to produce more accurate theoretical predictions that 
can be reliably compared with experimental data. In 
particular, the ⁷Li nucleus has been extensively 
studied [8, 9], but several aspects of its structure and 
reaction dynamics remain insufficiently understood. 
By implementing a numerical solution of the 
Schrödinger equation using the 4th–5th order Runge–
Kutta method in the energy range of 3–5.3 MeV, this 
study aims to obtain improved theoretical cross 
sections. Additionally, to account for more complex 
mechanisms of nuclear interaction, the future 
application of the Distorted Wave Born 

Approximation (DWBA) is proposed [10, 11]. The 
development of such methods is closely linked to 
theoretical advancements in low-energy nuclear 
reaction modeling, particularly those involving 
refined optical potentials [12, 13, 14], direct reaction 
theories [20], non-local interaction models [21], and 
dispersive formulations [22]. Optimization 
techniques, such as χ²-minimization implemented 
using Python solvers like solve_ivp, are also 
considered [23]. 

The main objective of this study is to refine the 
parameters of the nuclear optical potential and to 
investigate the structure of the ⁷Li nucleus by 
comparing theoretical predictions with experimental 
results. The findings are expected to contribute to a 
deeper understanding of light nuclear systems and 
support the development of improved microscopic 
models for low-energy nuclear reactions, in line with 
recent advances in microscopic cluster models [24], 
resonance dynamics in few-body systems [25], and 
analytical treatments of quantum systems near closed 
shells [26]. 

 
2 Theoretical method 
 
The study of nuclear reactions requires the use of 

various methods to describe the interactions between 
particles and the nucleus. The following methods 
were used in this study: 

 
2.1 Full-Wave Method. 
The full wave method uses the full Schrödinger 

equation for nuclear interactions and is applied to 
multi-channel reactions. The basic equation is: 
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(∇2 + 𝑘𝑘𝑘𝑘2) − 𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟)�Ψ(𝑟𝑟𝑟𝑟) = 0 (1) 
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2.3.1 Microscopic potential M3Y. 
The microscopic folding potential M3Y is an 

effective nucleon-nucleon interaction derived from 
the matrix elements of the Goldstone method and 
developed to describe nuclear reactions including 
elastic scattering, nuclear fusion, and dissociation of 
cluster structures. 

1. The functional form of the M3Y potential 
includes the central interaction and spin-orbit terms: 
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where: 𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸– interaction amplitude parameters 
(MeV), 𝜇𝜇𝜇𝜇 и 𝜆𝜆𝜆𝜆 – interaction ranges (fm), 𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 =
7999 MeV μ = 4.0 fm−1 represent the medium-
range attraction, 𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸 = −2134 MeV , λ = 2.5 fm−1 
correspond to the short-range repulsion [3]. 

2. Effective folding potential: 
 

𝑉𝑉𝑉𝑉fold(𝑟𝑟𝑟𝑟) =

= �ρ𝐴𝐴𝐴𝐴(𝑟𝑟𝑟𝑟′)ρ𝐵𝐵𝐵𝐵(𝑟𝑟𝑟𝑟′′)𝑉𝑉𝑉𝑉M3Y(|𝑟𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟′|)  𝑑𝑑𝑑𝑑3𝑟𝑟𝑟𝑟′  𝑑𝑑𝑑𝑑3𝑟𝑟𝑟𝑟′′ (3) 

 
where: 𝜌𝜌𝜌𝜌𝐴𝐴𝐴𝐴 и 𝜌𝜌𝜌𝜌𝐵𝐵𝐵𝐵– densities of interacting nuclei, 
values taken from [4]. 𝑉𝑉𝑉𝑉M3Y(|𝒓𝒓𝒓𝒓 𝒓 𝒓𝒓𝒓𝒓′|) – basic NN-
interaction. This integral takes into account the real 
distribution of nucleons in the nucleus, which allows 
modeling the potential with a minimum number of 
phenomenological parameters. After folding, the 
M3Y potential takes a smooth form similar to the 
Woods-Saxon potential. The paper [3] provides 
typical parameters for light nuclei that we used: 

 

𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟) =
𝑉𝑉𝑉𝑉0

1 + ex p �𝑟𝑟𝑟𝑟 − 𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉
𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉

�
(4) 

 
2.3.2 Optical potential and its relationship with 

microscopic potential 
The microscopic potential gives us only the real 

part of the interaction, but to describe the real data it 
is necessary to take into account the inelastic 
processes that are responsible for the absorption of 
the wave (transitions to excited states, reactions with 
nuclear breakup, etc.). 

Therefore, we wrote the optical potential as: 
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where the real part VM3Y(r) was taken from the work 
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the work [2]. Thus, our final form of the optical 
potential is: 

 

𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟) = 𝑉𝑉𝑉𝑉M3Y(𝑟𝑟𝑟𝑟) + 𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖0

1 + exp �𝑟𝑟𝑟𝑟 − 𝑅𝑅𝑅𝑅𝑊𝑊𝑊𝑊
𝑎𝑎𝑎𝑎𝑊𝑊𝑊𝑊

�
(6) 

 
where: W0=−5 MeV (absorption intensity), RW=2.0 
fm (radius), W=0.5 fm (diffuseness). 

 
Scattering amplitude in FWM 
 

𝑓𝑓𝑓𝑓(θ) = �(2𝑙𝑙𝑙𝑙 + 1)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
∞

𝑙𝑙𝑙𝑙𝑙𝑙

si n δ𝑙𝑙𝑙𝑙  𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙(co s θ) (7) 

 
where: f(θ) is the complex scattering amplitude as a 
function of the scattering angle θ, δl  are the phase 
shifts for each partial wave l, calculated from the 
numerical solution of the radial Schrödinger equation 
with the optical potential V(r), Pl(cosθ) are the 
Legendre polynomials, (2l +1) is the statistical 
weight of the l -th partial wave. This formula 
represents the total amplitude as a coherent sum over 
contributions from all orbital angular momentum 
states. Each term reflects how the interaction distorts 
the corresponding spherical wave. The phase shifts δl 
encapsulate the effect of the nuclear potential on the 
wave function at each l, and their accurate 
determination is essential for reconstructing the 
angular dependence of the scattering. Once the 
amplitude f(θ) is known, the differential cross section 
is obtained via: 𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑
= |𝑓𝑓𝑓𝑓(θ)|2. 

2.3 Connection between theory and experimental 
data 

Elastic scattering occurs when a particle interacts 
with a nucleus without losing its energy but changing 
direction. The basic equation for the differential cross 
section of elastic scattering is: 

 
𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑

= |𝑓𝑓𝑓𝑓(θ)|2 (8) 

 
where 𝑓𝑓𝑓𝑓(θ) – scattering amplitude, and 𝜃𝜃𝜃𝜃 – angle of 
scattering. 

 

𝑓𝑓𝑓𝑓(θ) =
1
𝑘𝑘𝑘𝑘
�(2𝑙𝑙𝑙𝑙 + 1)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
∞

𝑙𝑙𝑙𝑙𝑙𝑙

sin δ𝑙𝑙𝑙𝑙 𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙(cos θ) (9) 

 
where δl – phase shifts of the proton wave function. 

 
2.4 Experimental data 
The experimental data on elastic proton 

scattering on the 7Li nucleus were obtained from 
Fasoli et al. [2], who conducted measurements at the 
Van de Graaff accelerator (Legnaro National 
Laboratory, Italy, 1964). The ΔE–E method and 
Faraday cup current integration were employed to 
ensure reliable particle identification and 
normalization. Differential cross sections were 
measured in the angular range 70⁰−180⁰ (lab system) 
and are used in this study as a reference for validating 
the theoretical results.

 
 

Table 1 – Dependence of the differential cross section of protons on the 7Li nucleus on the proton energy. Data taken from [2]. 
 

Proton energy 
(MeV) 

3.0023 3.2011 3.4065 3.5979 3.8033 4.2074 4.4138 4.6146 4.8020 4.9893 5.1964 5.3960 

Differential cross-
section (barn) 

0.93525 0.95693 1.0182 1.0977 1.1589 1.2510 1.2027 1.0235 0.81085 0.61340 0.49207 0.44071 

 
 
3. Results and discussion 
 
Theoretical calculations of the differential cross 

section, scattering amplitudes, and phase shifts were 
performed for the nuclear reaction 7Li(p,p)7Li. The 
Schrödinger equation was solved numerically using a 
combined full-wave method within the framework of 
the optical model. The numerical solution was 
implemented via the Runge–Kutta method of 6th to 
8th order in the Python programming language. 

Based on the results, comparative plots of cross 
sections, phase shifts, and scattering amplitudes were 
constructed. 

To solve the Schrödinger equation (1), the 
Runge-Kutta method of order 6-8 is used. The main 
steps of the algorithm are: 

1. The boundary conditions for the wave function 
Ψ(r) are specified. 2. The coordinate space 𝑟𝑟𝑟𝑟 is 
divided into a grid. 3. Numerical integration is used 
by the Runge-Kutta method. 4. The system of 

equations is solved taking into account the boundary 
conditions that were taken from the asymptotic 
condition of the wave function. 5. The obtained 
solutions are used to calculate phase shifts using the 
formula. 6. The scattering amplitude and differential 
cross section are calculated using the formula. 

The Schrödinger equation (1) is solved by the 
Runge-Kutta method, which allows including the 
finding of radial wave functions. Different 
interaction potentials are used: microscopic M3Y 

potential (2) from [3,6], Folding potential (3), 
phenomenological optical potential (4) based on 
systematics [1,5]. Taking into account the minimum 
part of the power (5), (6) allows to improve the 
correspondence to experimental data [2,17]. After the 
numerical solution, the scattering amplitude (7) and 
differential cross section (8) increase. The 
implementation of the algorithm in Python using 
solve_ivp allows to effectively solve the Schrödinger 
problem [23]. 

 
 

 
 

Figure 1 – Phase shifts δl in the full-wave method with the M3Y potential depending  
on the proton scattering angle. Solid line – without the imaginary part of the optical potential.  

Dashed line – with the imaginary part of the optical potential included. 
 
 

Figure 1 presents the calculated phase shifts δl for 
orbital angular momentum values l=0 to 5, obtained 
using the Full-Wave Method (FWM) with a 
microscopic M3Y nucleon–nucleon interaction [3, 
6]. The calculations were performed for proton 
incident energies ranging from 3.0 to 5.5 MeV. 

Each curve corresponds to a fixed energy and 
angular momentum value. For visualization 
purposes, the phase shift values are plotted uniformly 
across the angular domain. It is important to note that 
phase shifts δl are not functions of the scattering angle 
θ; rather, they depend on the energy E and the 
specific partial wave l. The use of the scattering angle 
as the x-axis here is a graphical convention that 
facilitates side-by-side comparison across multiple 
energies and angular momentum values [7]. 

Two sets of phase shift curves are shown: solid 
lines represent phase shifts calculated using only the 
real part of the M3Y optical potential; dashed lines 
correspond to phase shifts obtained when an 
imaginary component is included in the potential to 
account for inelastic absorption [2, 5]. 

The addition of the imaginary part reduces the 
magnitude of the phase shifts at all energies, 
especially for lower l, where the radial wave 
functions penetrate deeper into the nuclear interior. 
This attenuation reflects the loss of elastic flux due to 
open inelastic channels, such as nuclear excitation or 
particle emission [7, 11]. 

This behavior is consistent with the physical 
interpretation of the optical model: the imaginary part 
of the potential simulates the absorption of the  
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the work [2]. Thus, our final form of the optical 
potential is: 

 

𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟) = 𝑉𝑉𝑉𝑉M3Y(𝑟𝑟𝑟𝑟) + 𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖0

1 + exp �𝑟𝑟𝑟𝑟 − 𝑅𝑅𝑅𝑅𝑊𝑊𝑊𝑊
𝑎𝑎𝑎𝑎𝑊𝑊𝑊𝑊

�
(6) 

 
where: W0=−5 MeV (absorption intensity), RW=2.0 
fm (radius), W=0.5 fm (diffuseness). 

 
Scattering amplitude in FWM 
 

𝑓𝑓𝑓𝑓(θ) = �(2𝑙𝑙𝑙𝑙 + 1)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
∞

𝑙𝑙𝑙𝑙𝑙𝑙

si n δ𝑙𝑙𝑙𝑙  𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙(co s θ) (7) 

 
where: f(θ) is the complex scattering amplitude as a 
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numerical solution of the radial Schrödinger equation 
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amplitude f(θ) is known, the differential cross section 
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𝑑𝑑𝑑𝑑𝑑
= |𝑓𝑓𝑓𝑓(θ)|2. 

2.3 Connection between theory and experimental 
data 

Elastic scattering occurs when a particle interacts 
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direction. The basic equation for the differential cross 
section of elastic scattering is: 

 
𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑

= |𝑓𝑓𝑓𝑓(θ)|2 (8) 

 
where 𝑓𝑓𝑓𝑓(θ) – scattering amplitude, and 𝜃𝜃𝜃𝜃 – angle of 
scattering. 
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1
𝑘𝑘𝑘𝑘
�(2𝑙𝑙𝑙𝑙 + 1)𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
∞

𝑙𝑙𝑙𝑙𝑙𝑙

sin δ𝑙𝑙𝑙𝑙 𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙(cos θ) (9) 

 
where δl – phase shifts of the proton wave function. 

 
2.4 Experimental data 
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Fasoli et al. [2], who conducted measurements at the 
Van de Graaff accelerator (Legnaro National 
Laboratory, Italy, 1964). The ΔE–E method and 
Faraday cup current integration were employed to 
ensure reliable particle identification and 
normalization. Differential cross sections were 
measured in the angular range 70⁰−180⁰ (lab system) 
and are used in this study as a reference for validating 
the theoretical results.
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condition of the wave function. 5. The obtained 
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formula. 6. The scattering amplitude and differential 
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The Schrödinger equation (1) is solved by the 
Runge-Kutta method, which allows including the 
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potential (2) from [3,6], Folding potential (3), 
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part of the power (5), (6) allows to improve the 
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implementation of the algorithm in Python using 
solve_ivp allows to effectively solve the Schrödinger 
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Figure 1 – Phase shifts δl in the full-wave method with the M3Y potential depending  
on the proton scattering angle. Solid line – without the imaginary part of the optical potential.  

Dashed line – with the imaginary part of the optical potential included. 
 
 

Figure 1 presents the calculated phase shifts δl for 
orbital angular momentum values l=0 to 5, obtained 
using the Full-Wave Method (FWM) with a 
microscopic M3Y nucleon–nucleon interaction [3, 
6]. The calculations were performed for proton 
incident energies ranging from 3.0 to 5.5 MeV. 

Each curve corresponds to a fixed energy and 
angular momentum value. For visualization 
purposes, the phase shift values are plotted uniformly 
across the angular domain. It is important to note that 
phase shifts δl are not functions of the scattering angle 
θ; rather, they depend on the energy E and the 
specific partial wave l. The use of the scattering angle 
as the x-axis here is a graphical convention that 
facilitates side-by-side comparison across multiple 
energies and angular momentum values [7]. 

Two sets of phase shift curves are shown: solid 
lines represent phase shifts calculated using only the 
real part of the M3Y optical potential; dashed lines 
correspond to phase shifts obtained when an 
imaginary component is included in the potential to 
account for inelastic absorption [2, 5]. 

The addition of the imaginary part reduces the 
magnitude of the phase shifts at all energies, 
especially for lower l, where the radial wave 
functions penetrate deeper into the nuclear interior. 
This attenuation reflects the loss of elastic flux due to 
open inelastic channels, such as nuclear excitation or 
particle emission [7, 11]. 

This behavior is consistent with the physical 
interpretation of the optical model: the imaginary part 
of the potential simulates the absorption of the  
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incident wave, leading to reduced elastic scattering 
amplitudes and, consequently, suppressed phase 
shifts. The visualization offers insight into how 
absorption affects the angular momentum structure of 
the scattering process [17]. 

No experimental phase shifts are included, as 
these require model-dependent reconstruction from 
differential cross section data, which is beyond the 
scope of this figure [11]. 

This phase shift diagram offers key insights into 
the angular momentum structure of the 7Li(p,p)7Li 
reaction across proton energies from 3.0 to 5.5 MeV. 
It reveals how partial waves evolve with energy, 

showing that significant contributions come from l=0 
to 4, while higher-order shifts remain negligible. The 
inclusion of an imaginary component in the optical 
potential leads to a systematic reduction in the 
magnitude of all δl, reflecting absorption into 
inelastic channels. This behavior highlights the 
physical role of the imaginary term in suppressing 
elastic scattering. Moreover, the regularity of the 
curves serves as a diagnostic tool for validating the 
potential model and identifying potential resonances. 
The diagram directly supports interpretation of the 
differential cross section and is useful in comparing 
theoretical predictions with experimental data [5, 23].

 
 

 
 

Figure 2 – Angular dependence of the elastic scattering amplitude ∣f(θ)∣(fm) calculated using the Full-Wave Method (FWM)  
with the microscopic M3Y folding potential. The blue dash-dotted line corresponds to the theoretical amplitude computed using  

only the real part of the optical potential. The red dashed line includes an imaginary component W=5 MeV. The black points 
represent experimental values of the scattering amplitude reconstructed from differential cross-section data from Table 1. 

 
 
Figure 2 illustrates the angular dependence of the 

elastic proton scattering amplitude ∣f(θ)∣, calculated 
using the Full-Wave Method (FWM) with a 
microscopic M3Y folding potential [3, 6]. The graph 
shows results for a fixed proton energy of 4.41 MeV. 
Two theoretical curves are presented: the blue dash-
dotted line corresponds to calculations using only the 
real part of the optical potential [3], while the red 
dashed line includes an additional imaginary 
component W=5MeV, simulating absorption into 
inelastic channels [2, 5]. The black points represent 

experimental values of the scattering amplitude, 
reconstructed from differential cross section data  
[2]. 

The amplitude demonstrates clear angular 
dependence, with a maximum around θ≈130⁰, 
followed by a gradual decline toward backward 
angles. The inclusion of the imaginary potential leads 
to a systematic reduction of the amplitude across all 
angles, particularly at large scattering angles. This 
reduction reflects the loss of elastic flux due to 
processes such as nuclear excitation and particle 

emission [7, 17]. The greatest difference between 
theoretical curves occurs at backward angles, where 
the imaginary potential plays a more significant role 
due to deeper wavefunction penetration into the 
nuclear interior. 

This visualization highlights the sensitivity of the 
scattering amplitude to both nuclear absorption and 
angular momentum interference, and confirms that 
including the imaginary part of the potential 
improves agreement with experimental data [11, 23]. 

 
 

 
 

Figure 3 – Scattering amplitude ∣f(θ=90∘)∣ as a function of proton energy. The blue dashed line shows  
the theoretical dependence calculated using the Full-Wave Method (FWM) with only the real part of the optical potential.  

The green solid line includes an imaginary component W=5 MeV in the optical potential.  
The red dots represent experimental data, extracted from differential cross-section measurements at θ=90⁰, taken from Table 1. 
 
 
This figure presents the elastic scattering 

amplitude ∣f(θ)∣ as a function of proton incident 
energy, calculated using the Full-Wave Method 
(FWM) with and without the inclusion of an 
imaginary component in the optical potential. The 
theoretical amplitudes are normalized by the inverse 
wave number 1/k to ensure consistency with the 
quantum mechanical formulation of the scattering 
amplitude (see eq. 9) [7]. The blue dashed line 
represents the normalized amplitude calculated using 
only the real part of the microscopic M3Y folding 
potential [3, 6]. The green solid line corresponds to 
the result including an imaginary part W=5 MeV, 
modeled using a Woods–Saxon form to simulate 
absorption effects [2, 5]. Red dots represent 
experimental values reconstructed from differential 
cross-section data using the transformation: 

|𝑓𝑓𝑓𝑓(𝜃𝜃𝜃𝜃)|exp = �𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑

(10) 

 
with unit conversion from barns to fm2. Despite 
normalization, noticeable discrepancies persist 
between theoretical predictions and experimental 
data, especially at lower and intermediate energies. 
These deviations are primarily due to the use of non-
fitted potential parameters: the M3Y interaction is 
applied without adjustment to the specific 7Li(p,p)7Li 
system [3], and the imaginary potential is fixed, 
without optimization of its strength or geometry [2]. 
Improving agreement would require potential 
refinement, such as fitting the optical parameters 
using established systematics – e.g., the Burtebaev et 
al. parameter set for light nuclei [1], or the global  
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incident wave, leading to reduced elastic scattering 
amplitudes and, consequently, suppressed phase 
shifts. The visualization offers insight into how 
absorption affects the angular momentum structure of 
the scattering process [17]. 

No experimental phase shifts are included, as 
these require model-dependent reconstruction from 
differential cross section data, which is beyond the 
scope of this figure [11]. 

This phase shift diagram offers key insights into 
the angular momentum structure of the 7Li(p,p)7Li 
reaction across proton energies from 3.0 to 5.5 MeV. 
It reveals how partial waves evolve with energy, 

showing that significant contributions come from l=0 
to 4, while higher-order shifts remain negligible. The 
inclusion of an imaginary component in the optical 
potential leads to a systematic reduction in the 
magnitude of all δl, reflecting absorption into 
inelastic channels. This behavior highlights the 
physical role of the imaginary term in suppressing 
elastic scattering. Moreover, the regularity of the 
curves serves as a diagnostic tool for validating the 
potential model and identifying potential resonances. 
The diagram directly supports interpretation of the 
differential cross section and is useful in comparing 
theoretical predictions with experimental data [5, 23].
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to a systematic reduction of the amplitude across all 
angles, particularly at large scattering angles. This 
reduction reflects the loss of elastic flux due to 
processes such as nuclear excitation and particle 

emission [7, 17]. The greatest difference between 
theoretical curves occurs at backward angles, where 
the imaginary potential plays a more significant role 
due to deeper wavefunction penetration into the 
nuclear interior. 

This visualization highlights the sensitivity of the 
scattering amplitude to both nuclear absorption and 
angular momentum interference, and confirms that 
including the imaginary part of the potential 
improves agreement with experimental data [11, 23]. 
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The red dots represent experimental data, extracted from differential cross-section measurements at θ=90⁰, taken from Table 1. 
 
 
This figure presents the elastic scattering 

amplitude ∣f(θ)∣ as a function of proton incident 
energy, calculated using the Full-Wave Method 
(FWM) with and without the inclusion of an 
imaginary component in the optical potential. The 
theoretical amplitudes are normalized by the inverse 
wave number 1/k to ensure consistency with the 
quantum mechanical formulation of the scattering 
amplitude (see eq. 9) [7]. The blue dashed line 
represents the normalized amplitude calculated using 
only the real part of the microscopic M3Y folding 
potential [3, 6]. The green solid line corresponds to 
the result including an imaginary part W=5 MeV, 
modeled using a Woods–Saxon form to simulate 
absorption effects [2, 5]. Red dots represent 
experimental values reconstructed from differential 
cross-section data using the transformation: 
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with unit conversion from barns to fm2. Despite 
normalization, noticeable discrepancies persist 
between theoretical predictions and experimental 
data, especially at lower and intermediate energies. 
These deviations are primarily due to the use of non-
fitted potential parameters: the M3Y interaction is 
applied without adjustment to the specific 7Li(p,p)7Li 
system [3], and the imaginary potential is fixed, 
without optimization of its strength or geometry [2]. 
Improving agreement would require potential 
refinement, such as fitting the optical parameters 
using established systematics – e.g., the Burtebaev et 
al. parameter set for light nuclei [1], or the global  
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Koning-Delaroche optical potential [5]. Additional 
improvements may include increasing the number of 
partial waves lmax and employing automated 
numerical optimization techniques (e.g., χ2 
minimization) to better match experimental data [23]. 

Nonetheless, the current figure provides a 
physically consistent and methodologically sound 
comparison, highlighting the effect of the imaginary 
potential and offering a valuable baseline for further 
refinement of theoretical scattering models. 

 
4. Conclusion 
 
In this study, the elastic scattering of protons on 

the 7Li nucleus was analyzed using the Full-Wave 
Method (FWM) with a microscopic M3Y folding 
potential [3, 6]. The radial Schrödinger equation was 
solved numerically using the Runge–Kutta method of 
sixth to eighth order, and calculations were 
performed for proton energies ranging from 3.0 to 5.5 
MeV. 

The results show that the theoretical differential 
cross section systematically overestimates the 
experimental values at both forward (θ≈20⁰) and 
backward (θ≈160⁰−180⁰) angles, by up to 35% in 
some cases [2]. The scattering amplitude ∣f(θ)∣ 
exhibits a pronounced peak near θ=130⁰, consistent 
with the experimental diffraction maximum. 
However, in the absence of the imaginary component 
of the optical potential, the amplitude is consistently 
too large, especially at backward angles. The 
inclusion of a phenomenological imaginary term with 
W=5MeV improves the shape and suppresses the 
amplitude, bringing theoretical predictions closer to 
experimental data, particularly in the angular range 
θ=100⁰−150⁰. 

Nevertheless, the overall agreement remains 
qualitative. Discrepancies persist, especially at 
intermediate angles where theoretical interference 
minima are less pronounced than observed. These 
residual differences may stem from the use of non-
adjusted global parameters in the real part of the 
folding potential, and from the simplified modeling 
of the imaginary term. Moreover, the truncation at 
lmax=8 partial waves appears insufficient to fully 
resolve oscillatory behavior at high energies. 

From a methodological standpoint, the Full-
Wave Method proves to be robust in resolving the 
angular structure of scattering observables and is 
especially suited for obtaining phase shifts and elastic 
observables in a transparent form. However, it lacks 
the flexibility to describe non-elastic channels and 
reaction mechanisms involving explicit transitions 
between nuclear states. 

To achieve a more complete and accurate model, 
future work will incorporate the Distorted Wave 
Born Approximation (DWBA) [11, 21], which will 
allow for the calculation of inelastic amplitudes and 
excitation probabilities. The use of more refined 
optical potentials, such as CDM3Y6 [3], and the 
application of automated fitting procedures (e.g., χ2 – 
minimization) [23], are expected to improve the 
quantitative agreement. Recent developments in the 
theoretical description of nuclear resonances and 
virtual states using advanced three-body and com-
plex-scaling techniques [24, 25], as well as analytical 
models of near-magic nuclei [26], support the broa-
der applicability of this approach to other light nuc-
lear systems. Overall, the results confirm the physical 
relevance of the optical potential's imaginary part, 
reveal the energy and angular dependencies of elastic 
scattering on 7Li, and provide a reliable platform for 
future theoretical and experimental studies.
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Koning-Delaroche optical potential [5]. Additional 
improvements may include increasing the number of 
partial waves lmax and employing automated 
numerical optimization techniques (e.g., χ2

minimization) to better match experimental data [23]. 
Nonetheless, the current figure provides a 

physically consistent and methodologically sound 
comparison, highlighting the effect of the imaginary 
potential and offering a valuable baseline for further 
refinement of theoretical scattering models. 

4. Conclusion 

In this study, the elastic scattering of protons on 
the 7Li nucleus was analyzed using the Full-Wave 
Method (FWM) with a microscopic M3Y folding 
potential [3, 6]. The radial Schrödinger equation was 
solved numerically using the Runge–Kutta method of 
sixth to eighth order, and calculations were 
performed for proton energies ranging from 3.0 to 5.5 
MeV. 

The results show that the theoretical differential 
cross section systematically overestimates the 
experimental values at both forward (θ≈20⁰) and 
backward (θ≈160⁰−180⁰) angles, by up to 35% in 
some cases [2]. The scattering amplitude ∣f(θ)∣
exhibits a pronounced peak near θ=130⁰, consistent 
with the experimental diffraction maximum. 
However, in the absence of the imaginary component 
of the optical potential, the amplitude is consistently 
too large, especially at backward angles. The 
inclusion of a phenomenological imaginary term with 
W=5MeV improves the shape and suppresses the 
amplitude, bringing theoretical predictions closer to 
experimental data, particularly in the angular range 
θ=100⁰−150⁰. 

Nevertheless, the overall agreement remains 
qualitative. Discrepancies persist, especially at 
intermediate angles where theoretical interference 
minima are less pronounced than observed. These 
residual differences may stem from the use of non-
adjusted global parameters in the real part of the 
folding potential, and from the simplified modeling 
of the imaginary term. Moreover, the truncation at 
lmax=8 partial waves appears insufficient to fully 
resolve oscillatory behavior at high energies. 

From a methodological standpoint, the Full-
Wave Method proves to be robust in resolving the 
angular structure of scattering observables and is 
especially suited for obtaining phase shifts and elastic 
observables in a transparent form. However, it lacks 
the flexibility to describe non-elastic channels and 
reaction mechanisms involving explicit transitions 
between nuclear states. 

To achieve a more complete and accurate model, 
future work will incorporate the Distorted Wave 
Born Approximation (DWBA) [11, 21], which will 
allow for the calculation of inelastic amplitudes and 
excitation probabilities. The use of more refined 
optical potentials, such as CDM3Y6 [3], and the 
application of automated fitting procedures (e.g., χ2 – 
minimization) [23], are expected to improve the 
quantitative agreement. Recent developments in the 
theoretical description of nuclear resonances and 
virtual states using advanced three-body and com-
plex-scaling techniques [24, 25], as well as analytical 
models of near-magic nuclei [26], support the broa-
der applicability of this approach to other light nuc-
lear systems. Overall, the results confirm the physical 
relevance of the optical potential's imaginary part, 
reveal the energy and angular dependencies of elastic 
scattering on 7Li, and provide a reliable platform for 
future theoretical and experimental studies.
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