

## Computer simulation of planar bifacial TOPCon solar cells by using Quokka 3 software

I.V. Zhirkov , A.M. Suleimenova ,  
A.T. Sultanov\*  and N.B. Beisenkhanov 

Kazakh-British Technical University, Almaty, Kazakhstan

\*e-mail: a.sultanov@kbtu.kz

(Received May 8, 2025; received in revised form November 12, 2025; accepted November 26, 2025)

This study presents a comprehensive simulation-based analysis of bifacial Tunnel Oxide Passivated Contact (TOPCon) solar cells using the Quokka 3 software. It investigates the impact of different antireflection coatings and rear albedo variations on device performance. One of the main findings is the significant improvement in optical and electrical properties after applying  $MgF_2$  antireflection coating on top of the cell. Structures with the addition of  $MgF_2$  achieved low, uniform reflectance and increased light absorption across the full solar spectrum. Compared to structures without  $MgF_2$ , those with the coating exhibited superior external quantum efficiency (EQE) and reduced reflected photocurrent density ( $J_R$ ) with the value of  $3.38 \text{ mA/cm}^2$ . Additionally, simulations revealed that increasing rear albedo values improved short-circuit current density ( $J_{sc}$ ) and power conversion efficiency (PCE). The highest PCE of 27.37% and  $J_{sc}$  of  $45.07 \text{ mA/cm}^2$  was obtained from a structure combining  $MgF_2$  and a rear albedo of 0.3 Voc in this case was equal to 0.74V. These results confirm that optimizing both antireflection coatings and rear-side illumination can significantly improve the efficiency of bifacial TOPCon solar cells, offering a viable pathway for enhanced photovoltaic (PV) performance.

**Keywords:** Si solar cell, TOPCon solar cell, bifacial solar cell, Quokka 3, antireflection coatings.

**PACS number(s):** 84.60.Jt, 68.65.Ac, 42.70.-a.

### 1. Introduction

Since the development of silicon (Si)-based solar cells, the photovoltaic industry has undergone rapid growth. Fueled by the increasing global demand for clean and renewable energy, extensive research has been directed toward advancing solar cell technologies. This effort has led to numerous scientific achievements, including the recent emergence of Tunnel Oxide Passivated Contact (TOPCon) Si solar cells. Renowned for their excellent passivation properties, reduced recombination losses, and high-power conversion efficiency (PCE), TOPCon technology represents a promising advancement in the field.

The TOPCon solar cell was first developed by the Fraunhofer Institute for Solar Energy (ISE) Systems in Germany in 2013, showing an efficiency of 23.7%[1]. After several advancements such as optimizing the wafer resistivity and process flow, PCE was further elevated to higher values of ~25.7% and a high fill factor (FF) of ~83.3% in 2017 also at Fraunhofer ISE [2].

The main feature of fabricating TOPCon cells involves inserting a very thin interfacial silicon oxide ( $SiO_x$ ) layer, typically around 1-2 nm, between doped polycrystalline Si (poly-Si) and crystalline Si (c-Si) layers, enhancing the collection of photo-generated carriers. Several research teams[1-5] have shown that combining a highly doped poly-Si layer with an ultrathin  $SiO_x$  layer provides low saturation current density ( $J_s < 5 \text{ fA/cm}^2$ ) and low contact resistivity ( $\rho_c < 1 \text{ m}\Omega\cdot\text{cm}^2$ ) simultaneously. This results in outstanding surface passivation with minimal recombination losses. The exceptional properties of the TOPCon structure are largely attributed to its key advantage: the c-Si wafer does not come into direct contact with the metal electrodes. This design helps reduce the Fermi level pinning (FLP) effect, thereby improving device performance and stability [3].

Recent developments in TOPCon structures have increased their market share and accelerated large-scale industrial production, supported by improved architecture such as integration with existing PERC lines and compatibility with high-efficiency silicon

tandem cells. Moreover, the configuration of bifacial TOPCon devices, generating energy from both the front and rear sides of the cell, has been actively explored in recent studies [6–9]. The front side functions like a standard solar cell, directly absorbing sunlight and converting it into electricity, while the rear side is designed to absorb light that is reflected off the ground or nearby surfaces, as well as diffused light from the atmosphere. This reflected and diffused solar radiation is measured by the term, called “albedo”.

Albedo is the most significant factor for bifacial solar cells as it influences energy production. Surfaces

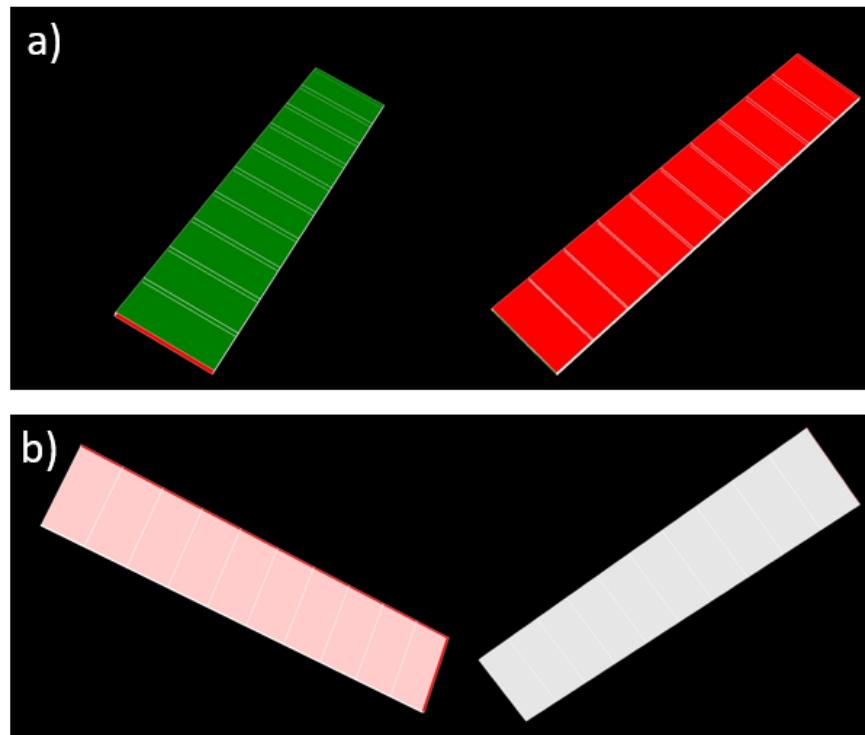
with higher albedo reflect more light, consequently increasing the energy yield. Thus, optimizing the design of bifacial TOPCon cell can further improve energy output and become particularly attractive for large-scale solar power plants. Table 1 presents albedo values for different surfaces.

While experimental characterization of bifacial TOPCon cells requires significant efforts, computer simulations provide versatile and simple way to study this structure. In this context, Quokka 3, a finite-volume-based simulation software, allows full-cell modeling, becoming a valuable tool for analyzing the performance of solar cells [11, 12].

**Table 1** – Albedo values for various types of surfaces [10].

| Surface | Corrugated roof | Colored paint | Trees       | Asphalt    | Concrete   | Grass      | Ice       |
|---------|-----------------|---------------|-------------|------------|------------|------------|-----------|
| Albedo  | 0.1 – 0.15      | 0.15 – 0.35   | 0.15 – 0.18 | 0.05 – 0.2 | 0.25 – 0.3 | 0.25 – 0.3 | 0.3 – 0.5 |

| Surface | Red/Brown roof tiles | Brick/Stone | Oceans     | Old snow    | White paint | Fresh Snow  |
|---------|----------------------|-------------|------------|-------------|-------------|-------------|
| Albedo  | 0.1 – 0.35           | 0.2 – 0.4   | 0.05 – 0.1 | 0.65 – 0.81 | 0.5 – 0.9   | 0.81 – 0.88 |


Computer simulations play a crucial role across all fields of scientific research, providing deeper insights and enabling more accurate predictions of experimental outcomes [13, 14]. In this research, we focus on a computer simulation of a bifacial TOPCon solar cell using Quokka 3 software. Our analysis includes utilization of antireflection coatings (ARC) based on transparent conductive oxides (TCO) such as Indium tin oxide (ITO), aluminum doped zinc oxide (AZO) and ARC based on magnesium fluoride ( $MgF_2$ ) [15, 16]. Furthermore, we evaluated key performance metrics such as current-voltage ( $J-V$ ) characteristics, reflectance spectra, external quantum efficiency (EQE), photocurrent density measurements and albedo-dependent characteristics of TOPCon solar cells with different ARCs. By comparing structures with different ARC of TOPCon solar cell, this study aims to identify the most efficient design. The findings contribute to a deeper understanding of bifacial TOPCon behavior and offer guidance for future development. By simulating bifacial solar cells, the study aims to highlight the performance advantages of bifacial operation and the influence of rear-side illumination in realistic operating environments.

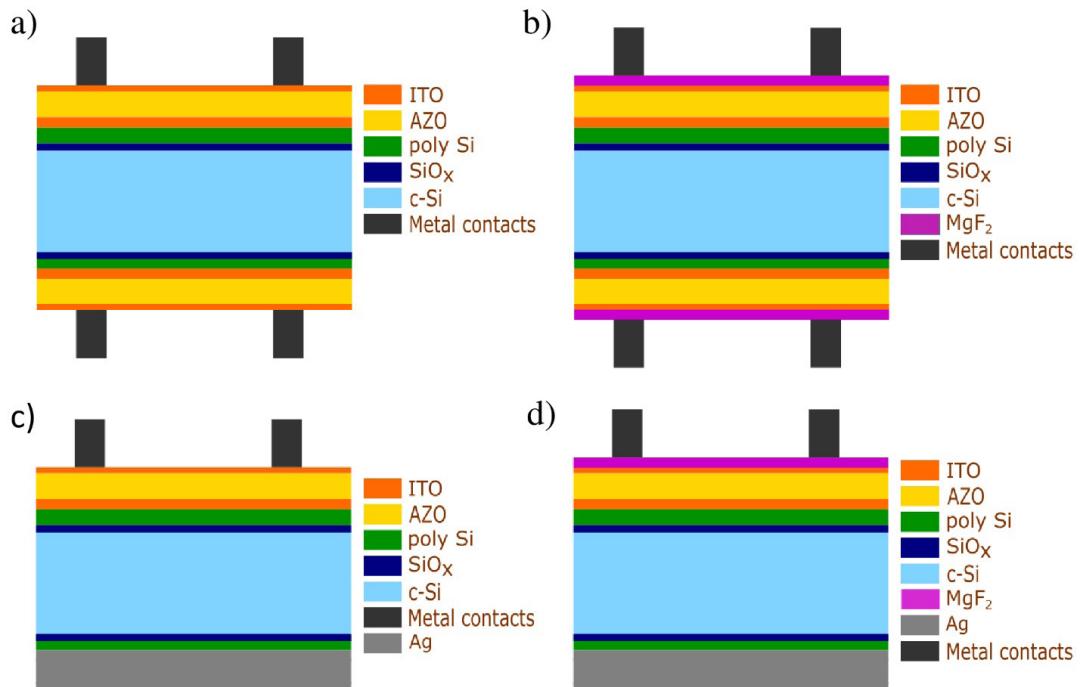
## 2. Simulation details

Quokka 3 simulations were employed to demonstrate the performance differences between bifacial and standard TOPCon solar cells. Figure 1 illustrates the simulated geometries of both the bifacial and standard cells within the Quokka 3 software environment. The simulation parameters, which provides a detailed overview of the values used throughout the modeling process are summarized in Table 2. Throughout the study parameters such as ARC layer, rear albedo, and bifacial or standard structure mode were varied. Fixed parameters included bulk wafer properties (200  $\mu m$ , 1  $\Omega \cdot cm$ ), poly-Si thickness (30 nm), doping densities, and recombination velocities, which were held constant based on typical literature values. For the bifacial cell simulations, the TOPCon+TCO structures were modeled by incorporating sheet resistance and saturation current density characteristics specific to bifacial designs. In contrast, the standard TOPCon solar cell was simulated using built-in Quokka 3 TOPCon structures for the rear side. This approach allowed for a clear comparison between the two architectures under consistent simulation conditions.

In the TOPCon solar cell structure, both the front and rear sides include poly-Si layers alongside a  $\text{SiO}_x$  tunneling layer. The poly-Si layer thickness was optimized to 30 nm, as this value was found to balance passivation quality and carrier transport efficiency [6, 17–19]. For the regular structure the rear side of the TOPCon solar cell was covered by silver (Ag) back electrode. A triple-layer coating composed of ITO-

AZO-ITO was used as the transparent electrode on the front side. For the bifacial TOPCon solar cell ITO-AZO-ITO transparent electrode was used on both sides of the solar cell. To maximize optical performance of the TOPCon solar cell  $\text{MgF}_2$  was used as an ARC on the top of the ITO-AZO-ITO transparent electrode. Figure 2 illustrates different structural combinations of TOPCon solar cells used in this work.




**Figure 1** – 3D view of TOPCon solar cell derived from Quokka 3 software program :  
a) bifacial structure, b) standard structure.

**Table 2** – Simulation parameters obtained from Quokka 3: Bulk parameters, external circuit, front n-type TOPCon + TCO layer, rear p-type TOPCon (Standard), rear p-type TOPCon (Bifacial) + TCO parameters.

| Bulk parameters                                        |                     |
|--------------------------------------------------------|---------------------|
| Dimensions                                             | 2                   |
| Thickness                                              | 200 $\mu\text{m}$   |
| Width                                                  | 18000 $\mu\text{m}$ |
| Resistivity(Bulk)                                      | 1 Ohm*cm            |
| Facing angle front/rear                                | 0                   |
| Doping type                                            | p-type              |
| Fundamental electron surface recombination velocity(n) | 100 cm/s            |
| Fundamental electron surface recombination velocity(p) | 100 cm/s            |
| Defect energy relative to intrinsic energy             | 0 eV                |
| Ilumination spectrum Rear/Front                        | AM1.5g              |

Continuation of the table

|                                                     |                          |
|-----------------------------------------------------|--------------------------|
| Illumination scale Frontside                        | 1                        |
| Illumination scale Rearside                         | (0,0.3) with step 0.02   |
| External circuit                                    |                          |
| Rseries                                             | 0.46 Ohmcm <sup>2</sup>  |
| Rshunt                                              | 3.5E3 Ohmcm <sup>2</sup> |
| Saturation current density of external diode        | 0 Acm <sup>-2</sup>      |
| Ideality factor of external diode                   | 2                        |
| front n-type TOPCon +TCO layer                      |                          |
| ConductionType                                      | n-type                   |
| Rsheet                                              | 90.58 Ohm/square         |
| Non Contacted Recombination $J_0$                   | 2 fA/cm <sup>2</sup>     |
| Contacted Recombination                             | 20 fA/cm <sup>2</sup>    |
| Thickness(poly-Si)                                  | 30nm                     |
| DopingDensity                                       | 1E20 cm <sup>-3</sup>    |
| Contact shape                                       | Rectangle                |
| Contact size                                        | 30 $\mu$ m               |
| Contact pitch                                       | 1800 $\mu$ m             |
| Contact repetition                                  | 11                       |
| Contact Ohmic Resistivity                           | 5E-5 Ohmcm <sup>2</sup>  |
| Metal Rsheet                                        | 0.003 Ohm                |
| rear p-type TOPCon (standard)                       |                          |
| Conduction type                                     | p-type                   |
| DopingDensity                                       | 1E19 cm <sup>-3</sup>    |
| Thickness                                           | 30 nm                    |
| fundamental electron surface recombination velocity | 10 cm/s                  |
| fundamental hole surface recombination velocity     | 10 cm/s                  |
| Contact shape                                       | Full                     |
| Contact size                                        | 18000 $\mu$ m            |
| Contact Ohmic Resistivity                           | 5E-5 Ohmcm <sup>2</sup>  |
| Metal Rsheet                                        | 0.003 Ohm                |
| rear p-type TOPCon (Bifacial) +TCO                  |                          |
| Conduction type                                     | p-type                   |
| Rsheet                                              | 90.58 Ohm/square         |
| NonContactedRecombination $J_0$                     | 2 fA/cm <sup>2</sup>     |
| ContactedRecombination                              | 20 fA/cm <sup>2</sup>    |
| Thickness(poly-Si)                                  | 30nm                     |
| DopingDensity                                       | 1E20 cm <sup>-3</sup>    |
| Contact shape                                       | Rectangle                |
| Contact size                                        | 30 $\mu$ m               |
| Contact pitch                                       | 1800 $\mu$ m             |
| Contact repetition                                  | 11                       |
| Contact Ohmic Resistivity                           | 5E-5 Ohmcm <sup>2</sup>  |
| Metal Rsheet                                        | 0.003 Ohm                |



**Figure 2** – Two-dimensional schematics of c-Si-based TOPCon solar cell:

- a) Simplified cell structure without  $\text{MgF}_2$  and Ag,
- b) Cell structure with  $\text{MgF}_2$  on both sides without Ag layer,
- c) Simplified cell structure with Ag at the bottom
- d) Cell structure with  $\text{MgF}_2$  on top and Ag at the bottom.

OPAL 2 optical simulator [20] was used to optimize the thickness of the transparent TCO electrode and  $\text{MgF}_2$  ARC for improved optical performance. During optimizations the goal was set to achieve maximum photon current absorbed in the active layer. Due to the layer number limitations of the OPAL 2 simulator, the thicknesses of the ITO-AZO-ITO multilayer were initially optimized as a standalone structure. Once the optimal configuration was determined, the  $\text{MgF}_2$  layer was optimized separately. To accommodate the simulator's constraints, the previously optimized ITO-AZO-ITO structure was modeled as a single ITO-equivalent layer, with the  $\text{MgF}_2$  layer added on top of this simplified model.

To further analyze the optical properties of the considered TOPCon solar cells, reflectance, parasitic absorption, and absorption within the active area were simulated using SCOUT software [21]. The absorption characteristics of each layer were evaluated individually, and the total parasitic absorption was calculated as the sum of absorption in all layers except the substrate.

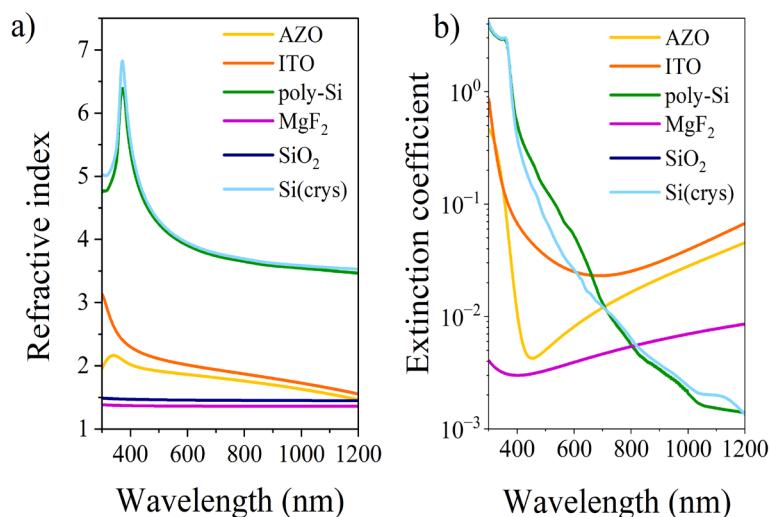
The optical constants ( $n$  and  $k$ ) for ITO and AZO were taken from the works of [22, 23]. The optical constants for  $\text{MgF}_2$  are taken from [24], as linked in

the OPAL 2 database. All other layers, including the substrate and back layers, were obtained from the SCOUT software [21].

### 3. Results and discussion

For accurate modeling and simulation of the optical behavior of the TOPCon solar cell, reliable refractive index ( $n$ ) and extinction coefficient ( $k$ ) data are essential. Figure 3 shows the wavelength-dependent optical constants for different materials used in the TOPCon solar cell. AZO exhibits a lower extinction coefficient than ITO, which ensures higher transmittance of ITO-AZO-ITO structure compared to an ITO-only structure. The ITO-AZO-ITO structures were examined in detail in our previous work[25].

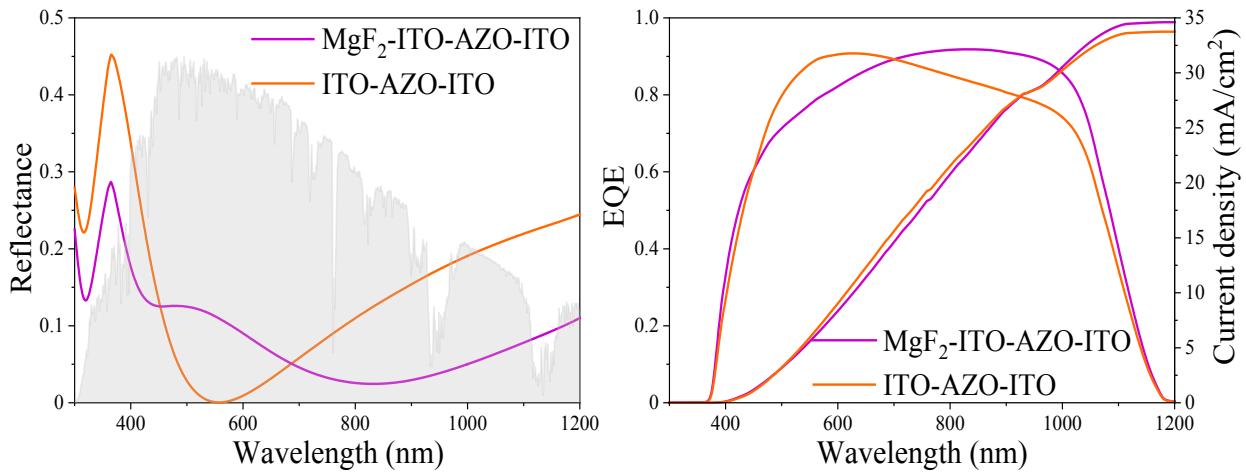
Across the entire range,  $\text{MgF}_2$  shows minimal extinction coefficient values, highlighting its highly transparent dielectric property. Moreover, it is well established that to minimize reflectance from a solar cell surface, it is essential to use materials with a gradually increasing refractive index from air to the substrate. The optimal refractive index  $n$  for the material used as an ARC can be calculated using the formula [26]:


$$r = \left[ \frac{n_{\text{air}} n_s - n^2}{n_{\text{air}} n_s + n^2} \right]^2, \quad (1)$$

where  $n_s$  is a refractive index of the substrate,  $n_{\text{air}}$  is a refractive index of air and  $n$  is a refractive index of the film.

According to the calculations refractive index of  $\text{MgF}_2$  ( $\sim 1.38$ ) is suitable to reduce reflection from TOPCon solar cell. Thus, in this work, TOPCon solar cell are considered with and without  $\text{MgF}_2$  ARC.

Figure 4a shows the simulated reflectance spectra of the TOPCon structures with and without the  $\text{MgF}_2$  ARC over the 300–1200 nm wavelength range. For reference, the solar irradiation spectrum is shown in the background. The structure with  $\text{MgF}_2$  layer shows relatively low and constant reflectance throughout the spectrum, suggesting effective antireflection behavior. Moreover, it experiences a noticeable decrease in


reflectance between 600–700 nm. This reduction in reflectance is attributed to the low refractive index of  $\text{MgF}_2$ , which reduces the refractive index mismatch between the underlying layers and air. The refractive index of  $\text{MgF}_2$  exhibits only minor variation across the entire solar spectrum while other refractive indexes experiencing constant decrease on the most part of spectrum, with the wavelength range of 600–700 nm providing the most noticeable smooth refractive index gradient between the underlying layers and air. However, the structure without  $\text{MgF}_2$  demonstrates a sharp reduction of reflectance at around 600 nm, suggesting that careful design of multilayer structure can achieve low reflectance at specific wavelengths. Overall, while the addition of  $\text{MgF}_2$  layer provides more consistent antireflective behavior across the broad spectrum, the structure without  $\text{MgF}_2$  offers potential for targeted wavelength optimization through multilayer structure engineering.

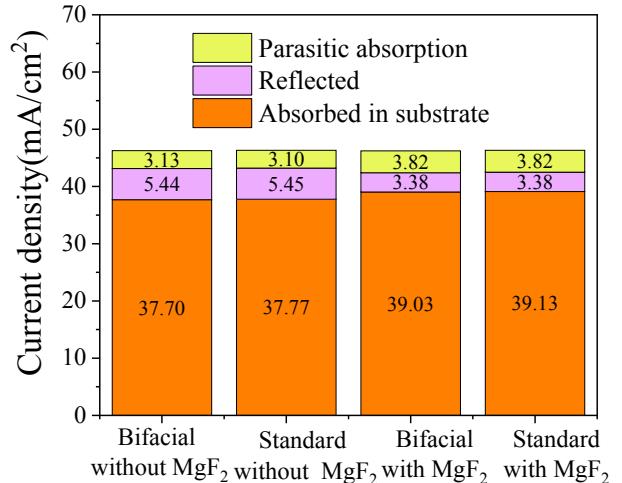


**Figure 3** – Optical properties: a) Refractive index and b) extinction coefficient as functions of wavelength for various materials (AZO, ITO, poly-Si,  $\text{MgF}_2$ ,  $\text{SiO}_2$ , Si).

Figure 4b illustrates the EQE simulations for structures with and without  $\text{MgF}_2$ , which is significantly influenced by the optical constants  $n$  and  $k$ , where the refractive index  $n$  determines the proportion of photons reflected at the interfaces between layers, while the extinction coefficient  $k$  governs the extent to which photons can penetrate into the bulk layer and the fraction that is transmitted without being absorbed. The structure with  $\text{MgF}_2$  layer exhibits higher performance across most of the wavelength

range compared to the structure without  $\text{MgF}_2$ . This is also evident in the calculated current density ( $J$ ), which shows that the final  $J$  value for the solar cell with  $\text{MgF}_2$  ARC is higher. However, due to the decrease in reflectance between 450 nm and 700 nm, the structure without  $\text{MgF}_2$  shows slightly better performance in this region. Overall, the addition of the  $\text{MgF}_2$  layer improves the EQE, indicating enhanced light management and reduced reflection due to the antireflective effect provided by  $\text{MgF}_2$ .




**Figure 4 – a)** Reflectance spectra of ITO-AZO-ITO and MgF<sub>2</sub>-ITO-AZO-ITO structures; **b)** EQE measurements for standard TOPCon solar cell with ITO-AZO-ITO and MgF<sub>2</sub>-ITO-AZO-ITO ARC.

To provide a comprehensive description of the optical properties of the structure, photon current density calculations were performed. 3 main characteristics were calculated: reflected photon current density ( $J_R$ ), parasitic absorption current density ( $J_{PA}$ ) and absorbed photon current density in the substrate ( $J_{Abulk}$ ). As optimizing useful absorption is essential for solar cell performance, the  $J_R$ ,  $J_{PA}$  and  $J_{Abulk}$  was determined for the wavelength intervals of 300–1200 nm by the following equation [27]:

$$J_x = \int_{\lambda_2}^{\lambda_1} X(\lambda) F(\lambda) q d\lambda, \quad (2)$$

where  $X(\lambda)$  is reflectance, parasitic absorption or absorption in the bulk,  $F(\lambda)$  is the incident photon flux density of AM1.5G irradiation,  $q$  is the elementary charge, and  $\lambda$  is the wavelength.

Figure 5 provides  $J_R$ ,  $J_{PA}$ ,  $J_{Abulk}$  calculations for different structures. Comparing bifacial and standard structures. According to the result all current density values show minimal differences, indicating that the back reflection from the rear Ag electrode is negligible. However, the addition of the MgF<sub>2</sub> layer to the ITO-AZO-ITO structure leads to significant decline of  $J_R$  from 5.44 to 3.38 mA/cm<sup>2</sup>, subsequently refining  $J_{PA}$  and  $J_{Abulk}$  values. This suggests that addition of MgF<sub>2</sub> acts effectively, redirecting previously reflected light into the active layer and enhancing useful absorption.



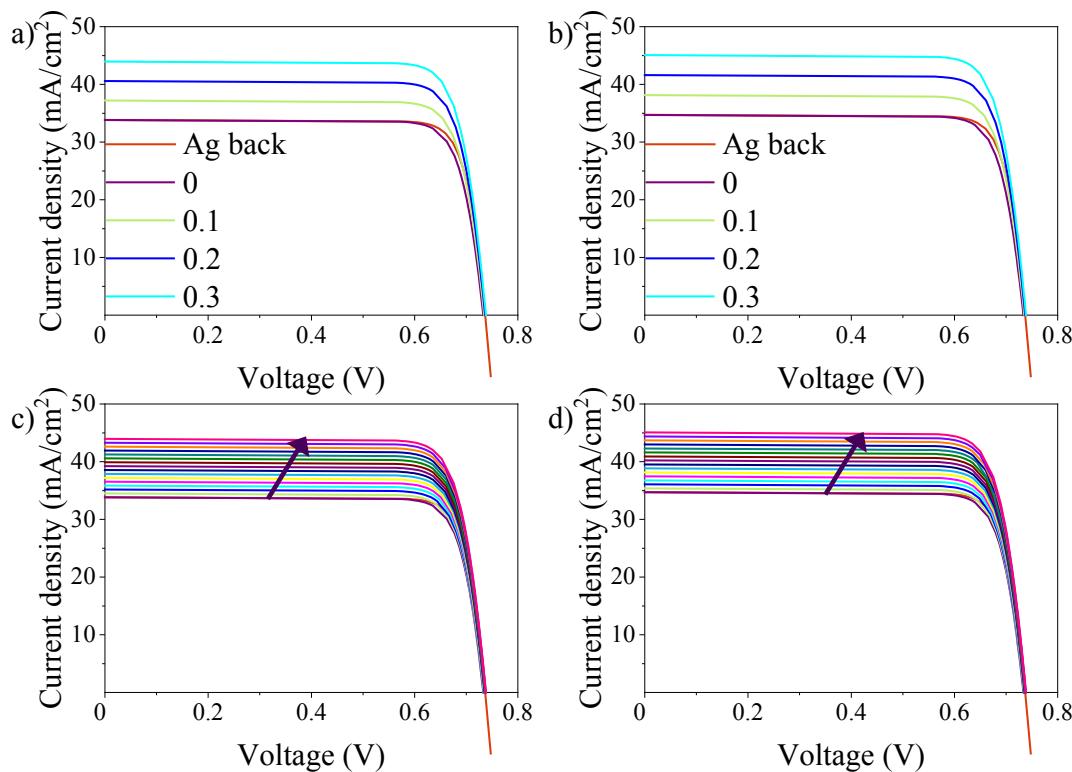

**Figure 5 –** Photo current density measurements for four configurations (Bifacial (ITO-AZO-ITO); Standard (ITO-AZO-ITO); Bifacial (MgF<sub>2</sub>-ITO-AZO-ITO); Standard (MgF<sub>2</sub>-ITO-AZO-ITO)). Three types of current densities are compared: Reflected current ( $J_R$ ), parasitic absorption current ( $J_{PA}$ ), current absorbed in the substrate ( $J_{Abulk}$ ).

Figure 6 presents the  $J-V$  characteristics of TOPCon solar cells with and without a MgF<sub>2</sub> ARC under varying rear-side albedo conditions. For clarity, Figures 6a and 6b depict the results for a standard and a bifacial TOPCon solar cell, with albedo intensities varying from 0 to 0.3 suns in 0.1 increments. Even in the absence of rear illumination (0 suns), the bifacial TOPCon solar cell exhibits a PCE of 20.56%, slight-

ly lower than that of the reference structure with a Ag back reflector (20.94%). This trend remains consistent for both  $\text{MgF}_2$ -coated and uncoated devices. Upon introducing a modest rear albedo of 0.1 suns, the bifacial structure demonstrates an almost 2% absolute increase in PCE, emphasizing the sensitivity of the device to even minor enhancements in rear-side illumination. This improvement is primarily attributed to the significant rise in short-circuit current density ( $J_{sc}$ ), while the open-circuit voltage ( $V_{oc}$ ) remains nearly constant across all albedo levels.

Figures 6c and 6d provide a more detailed analysis of the bifacial configuration, displaying the evolution of  $J$ - $V$  parameters as the albedo varies from 0 to 0.3 suns in finer steps of 0.02. The results show

an almost linear increase in  $J_{sc}$  with albedo, while  $V_{oc}$  changes slightly, from 0.73 to 0.74 V. These findings confirm that the observed PCE enhancement is predominantly governed by the increase in photocurrent. Furthermore, devices incorporating  $\text{MgF}_2$  ARC consistently outperform those without it under all albedo conditions. The  $\text{MgF}_2$  layer, in conjunction with enhanced rear illumination, improves light trapping and optical coupling, thereby boosting the internal photon generation rate. These outcomes highlight that increasing back albedo, especially when combined with optimized optical coatings, is a highly effective strategy for enhancing the photocurrent and overall performance of TOPCon solar cells.



**Figure 6 –  $J$ - $V$  Characteristics Under Varying Back Albedo for structures with  $\text{MgF}_2$  on the top and without  $\text{MgF}_2$ :**  
 a),b) shows changes to  $J$ - $V$  curve of bifacial structure in comparison to standard Ag back solar cells, pictures  
 c),d) shows changes to  $J$ - $V$  curve with increase of back albedo from 0 to 0.3  
 with the step of 0.02 (arrow show direction of increased albedo).

Tables 3 and 4 presents extensive data results based on Quokka 3 simulation. From previous discussion it was mentioned that  $J_{sc}$  increases with increase of back albedo and Tables 3 and 4 proves this for both cases with and without  $\text{MgF}_2$ . The same is true

for PCE. For the structures without  $\text{MgF}_2$ , the highest value of PCE is achieved at 26.69 %, while TOPCon solar cell with  $\text{MgF}_2$  ARC on top show the maximum value of 27.37 %. This results also shows precisely the point where  $V_{oc}$  for bifacial solar cell reaches the

value for standard TOPCon solar cell. For TOPCon solar cells without  $\text{MgF}_2$  the required albedo is 0.12 suns while with  $\text{MgF}_2$  implemented cells 0.08 suns albedo is already enough. Even though bifacial solar

cell provides better result for PCE,  $V_{\text{oc}}$  and  $J_{\text{sc}}$  it's important to point out that standard solar cells for both cases showed maximum FF while bifacial structure showed decrease in FF with increase of albedo.

**Table 3** – Bifacial TOPCon solar cell characteristics: open-circuit voltage ( $V_{\text{oc}}$ ), short-circuit current density ( $J_{\text{sc}}$ ), fill factor (FF), power conversion efficiency (PCE) values for structures without  $\text{MgF}_2$ .

| Optical Rear Illumination Scale Without $\text{MgF}_2$ | $V_{\text{oc}}$ (V) | $J_{\text{sc}}$ (mA/cm <sup>2</sup> ) | FF (%) | PCE (%) |
|--------------------------------------------------------|---------------------|---------------------------------------|--------|---------|
| Ag back                                                | 0.74                | 33.84                                 | 83.99  | 20.94   |
| 0                                                      | 0.73                | 33.81                                 | 82.93  | 20.56   |
| 0.02                                                   | 0.73                | 34.49                                 | 82.89  | 20.97   |
| 0.04                                                   | 0.73                | 35.16                                 | 82.85  | 21.38   |
| 0.06                                                   | 0.73                | 35.84                                 | 82.81  | 21.79   |
| 0.08                                                   | 0.73                | 36.51                                 | 82.76  | 22.20   |
| 0.1                                                    | 0.73                | 37.19                                 | 82.73  | 22.61   |
| 0.12                                                   | 0.74                | 37.86                                 | 82.69  | 23.02   |
| 0.14                                                   | 0.74                | 38.54                                 | 82.65  | 23.43   |
| 0.16                                                   | 0.74                | 39.22                                 | 82.60  | 23.84   |
| 0.18                                                   | 0.74                | 39.89                                 | 82.56  | 24.25   |
| 0.2                                                    | 0.74                | 40.57                                 | 82.52  | 24.66   |
| 0.22                                                   | 0.74                | 41.24                                 | 82.47  | 25.07   |
| 0.24                                                   | 0.74                | 41.92                                 | 82.43  | 25.47   |
| 0.26                                                   | 0.74                | 42.59                                 | 82.38  | 25.88   |
| 0.28                                                   | 0.74                | 43.27                                 | 82.34  | 26.29   |
| 0.3                                                    | 0.74                | 43.94                                 | 82.29  | 26.69   |

**Table 4** – Bifacial TOPCon solar cell characteristics: open-circuit voltage ( $V_{\text{oc}}$ ), short-circuit current density ( $J_{\text{sc}}$ ), fill factor (FF), power conversion efficiency (PCE) values for structures with  $\text{MgF}_2$ .

| Optical Rear Illumination Scale with $\text{MgF}_2$ | $V_{\text{oc}}$ (V) | $J_{\text{sc}}$ (mA/cm <sup>2</sup> ) | FF (%) | PCE (%) |
|-----------------------------------------------------|---------------------|---------------------------------------|--------|---------|
| Ag back                                             | 0.74                | 34.71                                 | 83.94  | 21.48   |
| 0                                                   | 0.73                | 34.68                                 | 82.88  | 21.08   |
| 0.02                                                | 0.73                | 35.37                                 | 82.84  | 21.51   |
| 0.04                                                | 0.73                | 36.06                                 | 82.79  | 21.93   |
| 0.06                                                | 0.73                | 36.76                                 | 82.75  | 22.35   |
| 0.08                                                | 0.74                | 37.45                                 | 82.71  | 22.77   |
| 0.1                                                 | 0.74                | 38.14                                 | 82.67  | 23.19   |
| 0.12                                                | 0.74                | 38.83                                 | 82.63  | 23.61   |
| 0.14                                                | 0.74                | 39.53                                 | 82.58  | 24.03   |
| 0.16                                                | 0.74                | 40.22                                 | 82.54  | 24.45   |
| 0.18                                                | 0.74                | 40.91                                 | 82.49  | 24.87   |

Continuation of the table

| Optical Rear Illumination Scale with $\text{MgF}_2$ | $V_{oc}$ (V) | $J_{sc}$ (mA/cm <sup>2</sup> ) | FF (%) | PCE (%) |
|-----------------------------------------------------|--------------|--------------------------------|--------|---------|
| 0.2                                                 | 0.74         | 41.60                          | 82.45  | 25.29   |
| 0.22                                                | 0.74         | 42.30                          | 82.40  | 25.70   |
| 0.24                                                | 0.74         | 42.99                          | 82.36  | 26.12   |
| 0.26                                                | 0.74         | 43.68                          | 82.31  | 26.54   |
| 0.28                                                | 0.74         | 44.38                          | 82.26  | 26.95   |
| 0.3                                                 | 0.74         | 45.07                          | 82.21  | 27.37   |

Overall, the findings underscore the significance of combining advanced ARC strategies—such as  $\text{MgF}_2$ -capped multi-layer designs—with effective utilization of bifacial architectures. The implementation of ARC structure allowed for better energy distribution between used and not used energy. While implementation of rear side illumination explicitly shows increase in  $J_{sc}$ . Such integrated optimization not only boosts the efficiency of TOPCon cells but also maximizes their energy yield in real-world operating conditions. The achieved efficiency of 27.37% under a rear albedo of 0.3 with  $\text{MgF}_2$  outperforms many reported TOPCon structures in the literature, which typically range between 23–26% [2, 6–8]. Consequently, compared to existing TOPCon approaches, the practical difference of the model lies in integration of  $\text{MgF}_2$ /ITO/AZO/ITO ARCs and rear albedo effects with a bifacial operation, allowing for simultaneous enhancement of optical and electrical performance. This research reinforces the potential of  $\text{MgF}_2$ -enhanced bifacial TOPCon solar cells as a viable and efficient solution for next-generation photovoltaic technologies.

It is important to note, however, that our simulations have some limitations. The optical modeling in OPAL 2 considered only the front-side texture and assumed an idealized Lambertian rear reflector, while SCOUT assumed planar, continuous layers. Electrically, Quokka 3 operates in 2D and does not capture all 3D carrier transport effects. Furthermore, all simulations assumed ideal interfaces and material properties; real-world fabrication imperfections may lead to slightly lower performance. Experimental verification of the simulated structures is therefore needed, including  $\text{MgF}_2$ -coated bifacial TOPCon cells, to confirm the simulation result

#### 4. Conclusions

In conclusion, this study presents a comprehensive simulation-based investigation of bifacial TOPCon solar cells, with modeling conducted using Quokka 3 software. The structural design and optical characteristics of these cells were thoroughly examined with the aid of OPAL 2 and SCOUT softwares, enabling precise analysis of light behavior and internal device parameters. A key focus was placed on evaluating various ARC configurations, specifically triple-layered ITO-AZO-ITO structures, both with and without the inclusion of an  $\text{MgF}_2$  top layer. It was found that the refractive index of  $\text{MgF}_2$  is suitable for reducing reflection from TOPCon solar cells with ITO/AZO/ITO transparent electrode. The optical modeling revealed that the integration of an  $\text{MgF}_2$  layer on top of the ARC significantly enhances the optical response of the solar cell by achieving lower and more uniform reflectance across the spectrum under investigation with a noticeable decrease between 600–700 nm. This improvement in light management leads to better photon absorption, ultimately translating into enhanced electrical performance. The optimized structure demonstrated a measurable gain in EQE. Furthermore, the addition of  $\text{MgF}_2$  effectively redirects previously reflected light into the active layer, enhancing useful absorption. As a result, a significant decline in  $J_R$  from 5.44 to 3.38 mA/cm<sup>2</sup> was observed, leading to improved  $J_{PA}$  and  $J_{Abulk}$  values. Further analysis focused on the impact of rear-side illumination, modeled through varying rear albedo conditions. Back reflection from the rear Ag electrode was found to be negligible. It has been established that at 0 suns albedo, PCE of bifacial solar cells was only slightly lower than of solar cells

with Ag back (20.56 to 20.94% respectively) and this trend was similar for both structures with and without  $\text{MgF}_2$  ARC. Results indicated that increasing the albedo positively influences key electrical parameters of the  $J-V$  curve, notably the  $J_{sc}$  and PCE with  $V_{oc}$  slightly changing from 0.73 to 0.74. The highest efficiency, recorded at 27.37%, was achieved under a rear albedo of 0.3 when the cell incorporated the  $\text{MgF}_2$ -enhanced ARC structure. This highlights the critical role of rear-side reflectivity in bifacial solar

cell performance, emphasizing the importance of optimizing both front and rear interfaces. Additionally, the computer simulation highlights the need for future experimental validation of the proposed structures, given their outstanding simulated performance.

**Acknowledgements.** The research was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP19680267).

## References

1. Rohatgi A., Rounsaville B., Ok Y. W., Tam A. M., Zimbardi F., Upadhyaya A. D., Tao Y., Madani K., Richter A., Benick J., Hermle M. Fabrication and modeling of high-efficiency front junction n-type silicon solar cells with tunnel oxide passivating back contact // IEEE Journal of Photovoltaics. – 2017. – Vol. 7. – Pp. 1236–1243. <https://doi.org/10.1109/JPHOTOV.2017.2715720>
2. Feldmann F., Reichel C., Müller R., Hermle M. The application of poly-Si/SiO<sub>x</sub> contacts as passivated top/rear contacts in Si solar cells // Solar Energy Materials and Solar Cells. – 2017. – Vol. 159. – Pp. 265–271. <https://doi.org/10.1016/j.solmat.2016.09.015>
3. Ullah H., Czapp S., Szultka S., Tariq H., Qasim U. Bin, Imran H. Crystalline silicon (c-Si) based tunnel oxide passivated contact (TOPCon) solar cells: A review // Energies. – 2023. – Vol. 16. – Art. 715. <https://doi.org/10.3390/en16020715>
4. Römer U., Peibst R., Ohrdes T., Lim B., Krügener J., Wietler T., Brendel R. Ion implantation for poly-Si passivated back-junction back-contacted solar cells // IEEE Journal of Photovoltaics. – 2015. – Vol. 5. – Pp. 507–514. <https://doi.org/10.1109/JPHOTOV.2014.2382975>
5. Peibst R., Römer U., Larionova Y., Rienäcker M., Merkle A., Folchert N., Reiter S., Turcu M., Min B., Krügener J., Tetzlaff D., Bugiel E., Wietler T., Brendel R. Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? // Solar Energy Materials and Solar Cells. – 2016. – Vol. 158. – Pp. 60–67. <https://doi.org/10.1016/j.solmat.2016.05.045>
6. Wang Q., Peng H., Gu S., Guo K., Wu W., Li B., Li L., Yuan N., Ding J. High-efficiency n-TOPCon bifacial solar cells with selective poly-Si based passivating contacts // Solar Energy Materials and Solar Cells. – 2023. – Vol. 259. – Art. 112458. <https://doi.org/10.1016/j.solmat.2023.112458>
7. Wu W., Jolywood J. B., Bao J., Ma L., Chen C., Liu R., Qiao Z., Chen J., Liu Z. Development of industrial n-type bifacial TOPCon solar cells and modules // 37th European Photovoltaic Solar Energy Conference and Exhibition. – 2019. – Pp. 100–102. <https://doi.org/10.4229/EUPVSEC20192019-2BP.1.5>
8. Chen Y., Chen D., Liu C., Wang Z., Zou Y., He Y., Wang Y., Yuan L., Gong J., Lin W., Zhang X., Yang Y., Shen H., Feng Z., Altermatt P. P., Verlinden P. J. Mass production of industrial tunnel oxide passivated contacts (i-TOPCon) silicon solar cells with average efficiency over 23% and modules over 345 W // Progress in Photovoltaics: Research and Applications. – 2019. – Vol. 27. – Pp. 827–834. <https://doi.org/10.1002/pip.3180>
9. Jain A., Choi W. J., Huang Y. Y., Klein B., Rohatgi A. Design, optimization, and in-depth understanding of front and rear junction screen-printed double-side passivated contacts solar cells // Conference Record of the IEEE Photovoltaic Specialists Conference. – 2020. – Pp. 1339–1343. <https://doi.org/10.1109/PVSC45281.2020.9300805>
10. Kotak B., Eng Y., Gul BEng M. S., Muneer T., Ivanova S. Investigating the impact of ground albedo on the performance of PV systems // CIBSE Technical Symposium, London, UK, April 16-17, 2015. <https://researchportal.hw.ac.uk/en/publications/investigating-the-impact-of-ground-albedo-on-the-performance-of-p/> (available on December 17, 2025).
11. Fell A., Altermatt P. P. A detailed full-cell model of a 2018 commercial PERC solar cell in Quokka3 // IEEE Journal of Photovoltaics. – 2018. – Vol. 8. – P. 1443–1448. <https://doi.org/10.1109/JPHOTOV.2018.2863548>
12. Kowsar A., Debnath S. C., Shafayet-Ul-Islam Md., Hossain M. J., Hossain M., Chowdhury A. K., Hashmi G., Farhad S. F. U. An overview of solar cell simulation tools // Solar Energy Advances. – 2025. – Vol. 5. – Art. 100077. <https://doi.org/10.1016/j.seja.2024.100077>
13. Solodovnik A., Kleksin R., Leontyev P., Useinov B., Markova A., Kassimova S. Revealing the noctilucent cloud fields structure by software processing of satellite images // Physical Sciences and Technology. – 2025. – Vol. 12. – Pp. 4–13. <https://doi.org/10.26577/phst20251211>
14. Vorobyova O., Sokolov D., Korshikov Y. Modeling of thermal distribution on cryosurface for low temperatures // Physical Sciences and Technology. – 2025. – Vol. 12. – No. 1–2. – Pp. 115–120. <https://doi.org/10.26577/phst202512111>
15. Kemelbekova A., Lebedev I. A., Grushevskaya E. A., Murzalinov D. O., Fedosimova A. I., Kemelbekova A. E., Kazhiev Zh. Sh., Zhaysanbayev Zh. K., Temiraliyev A. T. The effect of deposition technique on formation of transparent conductive coatings of  $\text{SnO}_2$  // Physical Sciences and Technology. – 2022. – Vol. 9. – Pp. 37–44. <https://doi.org/10.26577/phst.2022.v9.i1.05>
16. Chavan G. T., Kim Y., Khokhar M. Q., Hussain S. Q., Cho E.-C., Yi J., Ahmad Z., Rosaiah P., Jeon C.-W. A brief review of transparent conducting oxides (TCO): the influence of different deposition techniques on the efficiency of solar cells // Nanomaterials. – 2023. – Vol. 13. – No. 7. – Art. 1226. <https://doi.org/10.3390/nano13071226>

17. Grübel B., Nagel H., Steinhauser B., Feldmann F., Kluska S., Hermle M. Influence of plasma-enhanced chemical vapor deposition poly-Si layer thickness on the wrap-around and the quantum efficiency of bifacial n-TOPCon solar cells // *Physica Status Solidi (A) Applications and Materials Science*. – 2021. – Vol. 218. – Art. 2100156. <https://doi.org/10.1002/pssa.202100156>

18. Yan X., Suhaimi F. Bin, Xu M., Yang J., Zhang X., Wang Q., Jin H., Shanmugam V., Duttagupta S. Development of ultra-thin doped poly-Si via LPCVD and ex-situ tube diffusion for passivated contact solar cell applications // *Solar Energy Materials and Solar Cells*. – 2020. – Vol. 209. – Art. 110458. <https://doi.org/10.1016/j.solmat.2020.110458>

19. Ditsougou J., Desrues T., Kaminski A., Dubois S. Optimization of poly-Si/SiO<sub>x</sub> passivated contacts for crystalline silicon bottom cells applications // *SiliconPV Conference Proceedings*. – 2025. – Vol. 2. <https://doi.org/10.52825/siliconpv.v2i.1310>

20. McIntosh K. R., Baker-Finch S. C. OPAL 2: Rapid optical simulation of silicon solar cells // 38th IEEE Photovoltaic Specialists Conference. – 2012. – Pp. 000265–000271. <https://doi.org/10.1109/PVSC.2012.6317616>

21. Theiss W. Hard- and software for optical spectroscopy. – Available at: <https://www.wtheiss.com/> (available on December 15, 2025).

22. Nussupov K. K., Beisenkhanov N. B., Kusainova A. Z., Shynybayev D. S., Zhirkov I. V., Sultanov A. T. Influence of the RF magnetron sputtering power on the optical and electrical properties of AZO films // *Physical Sciences and Technology*. – 2023. – Vol. 10. – No. 2. – Pp. 28–32. <https://doi.org/10.26577/phst.2023.v10.i2.03>

23. Rakhimova A. Zh., Zhirkov I. V., Nussupov K. Kh., Beisenkhanov N. B., Sultanov A. T. Effect of oxygen flow on electrical and optical properties of ITO films synthesized by magnetron sputtering method // *Herald of the Kazakh-British Technical University*. – 2023. – Vol. 20. – P. 109–117. <https://doi.org/10.55452/1998-6688-2023-20-4-109-117>

24. Siqueiros J. M., Machorro R., Regalado L. E. Determination of the optical constants of MgF<sub>2</sub> and ZnS from spectrophotometric measurements and the classical oscillator method // *Applied Optics*. – 1988. – Vol. 27. – Pp. 2549–2553. <https://doi.org/10.1364/AO.27.002549>

25. Sultanov A., Zhirkov I., Nussupov K., Kusainova A., Abdyldayeva N., Beisenkhanov N. Investigation on optical and electrical properties of multilayer ITO/AZO/ITO transparent conductive oxides // *Optical Materials*. – 2024. – Vol. 155. – Art. 115850. <https://doi.org/10.1016/j.optmat.2024.115850>

26. Raut H. K., Ganesh V. A., Nair A. S., Ramakrishna S. Anti-reflective coatings: A critical, in-depth review // *Energy and Environmental Science*. – 2011. – Vol. 4. – Pp. 3779–3804. <https://doi.org/10.1039/C1EE01297E>

27. Sultanov A., Mussakhanuly N., Kusainova A., Parkhomenko H. P., Yerlanuly Y., Nussupov K., Ng A., Beisenkhanov N., Jumabekov A. N. Utilizing MoO<sub>x</sub>-Au-MoO<sub>x</sub> trilayers as transparent top electrodes in 2-terminal monolithic Si/perovskite tandem solar cells // *Applied Physics A: Materials Science and Processing*. – 2025. – Vol. 131. – Pp. 1–10. <https://doi.org/10.1007/s00339-025-08425-x>

**Information about authors:**

*Zhirkov Ilya* – Junior Researcher at the “Laboratory of Alternative Energy and Nanotechnology”, Master Student at the Kazakh-British Technical University (Almaty, Kazakhstan, e-mail: [il\\_zhirkov@kbtu.kz](mailto:il_zhirkov@kbtu.kz)).

*Suleimenova Aigany* – Lab Assistant at the “Laboratory of Alternative Energy and Nanotechnology”, Bachelor student at the Kazakh-British Technical University (Almaty, Kazakhstan, e-mail: [aiga\\_suleimenova@kbtu.kz](mailto:aiga_suleimenova@kbtu.kz)).

*Sultanov Asanali* – PhD student at the Kazakh-British Technical University, Head of “Laboratory of Alternative Energy and Nanotechnology” at the Kazakh-British Technical University (Almaty, Kazakhstan, e-mail: [a.sultanov@kbtu.kz](mailto:a.sultanov@kbtu.kz)).

*Beisenkhanov Nurzhan* – Doctor of Physical and Mathematical Sciences, Professor, Member of AAAS and ACS, Chief Researcher, Dean of SMS&GT at the Kazakh-British Technical University (Almaty, Kazakhstan, e-mail: [n.beisenkhanov@kbtu.kz](mailto:n.beisenkhanov@kbtu.kz)).