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We have developed a homemade neutron flux detection module with 3He tube hot-swap capability and 
control-rich Android software interface. Real-time data analysis is done by a smartphone with Android 
application interfaced with the detector via a USB cable. This setup can be used as a neutron and gamma ray 
background detector or as a compact, mobile 3He tubes calibration tool making it a cheap and easy-to-use 
alternative for the stationary setups. A fast neutron detection algorithm was implemented as a set of Java 
scripts and tested for real-time signal analysis. The modular structure of the device allows easy deployment 
and customization with further software development and regular upgrades. The current prototype was 
tested at the Nuclear Physics Research Institute under different neutron flux intensity conditions from 
the VVR-K water-cooled research reactor. Its simplicity and significantly lower cost, compared with 
conventional detector equipment, make it valuable for easy repetitive tasks with medium requirements for 
precision and neutron flux intensities.
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1. Introduction 
 
Personal Android devices provide adequate 

computational power, availability [1], and comfort of 
use over stationary computers, contributing to the 
increasing number of their applications in daily use 
and in fundamental physics experiments. Fast and 
reliable interaction between the measurement tool 
and processing module is important [2]. Android 
devices could use their own internal sensors, like 
accelerometers, Hall and infrared sensors, etc, or 
work with an external hardware coupled through 
different interfaces to detect fast transient phenomena 
of varying nature [3]. 

There are studies reporting the onboard hardware 
such as smartphone CMOS camera [4] used for 
particles detection. In more complex cases, to 
facilitate the efficient interaction of the Android 
devices together with registration and detection 
hardware, they are coupled with the separate 
detectors and/or electronic assemblies through the 

wireless [5] interface or USB cable.  Sometimes, the 
measurements are done at some remote facility 
equipped with server capability providing the user 
with internet access with static or dynamically 
updated records and measurement data. The typical 
example for the last one is the global cosmic ray 
neutron monitor networks supported by various 
institutions worldwide, see, for example, the range of 
neutron monitor stations maintained by the 
University of Delaware Bartol Research Institute [6]. 

With the particular hardware and experimental 
problem in mind, the individual solution is usually 
implemented within this range of choices. Although 
some components and modules, such as registration 
devices, signal amplifiers, ADCs, USB or wireless 
interfaces, etc, remain the same, the custom software 
finalizes them into a single measurement tool to 
complete the desired experiment objective. 

Neutron physics was and still remains the import 
part of modern tool of fundamental research as well 
as a practical tool in material studies [7]. Nuclear and 

ionizing radiation detectors provide vital information 
about the environment and transient process around 
[8], We employed the modular neutron/gamma ray 
detection setup, provided by the Cosmic Rays 
Physics Laboratory [6] at the Nuclear Physics 
Institute, Almaty, Kazakhstan. In this setup, the 
detector is equipped with an electronic hardware 
interface consisting of an amplifier, an ADC, and a 
USB 2.0 bus for data exchange between the 
electronics and Android devices (smartphone). The 
smartphone is used for data storage and processing. 
The ADC generates digital output for every neutron 
and neutron-like, usually gamma ray, detection event 
in a proportional 3He-filled SNC-18 (Slow Neutron 
Counter) detector tube; see Figure 1. These SNC-18 
tubes are widely used in different stationary and 
mobile setups and can be found in old and new 
conditions in stock. High detection efficiency and 
low background noise are the benefits of using these 
Helium-3 detectors. 3He interaction with neutron flux 
is the separate part of the contemporary nuclear 
physics research [9]. 

In our case, the ADC is designed to sample the 
signal output from the detector amplifier at the rate of 
5000 times per second [10]. The detector module’s 
electronics receive the high-voltage power from any 
connected Android device configured in the USB 
host mode. The USB host mode [11] had been 
conveniently added to Android devices version 3.1 
and higher. 

As a further development, we completed the 
provided setup with custom Android software for 
data flow registration, processing, and storage. The 
set of Java scripts is used for the USB bus signal HEX 
to decimal conversion, basic shape recognition 
routines and events counting as well as for the 
processed data formatting and subsequent storage. 
Additional work has been done for developing R 
scripts [12] for retrospective signal patterns 
classification and filtering. 

The assembled device, with the 3He detector tube 
attached to the electronics housing, and the 
smartphone, has a relatively compact and portable 
dimension of less than 50 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; see Figure 2.

 
 

  

Figure 1 – SNC18 Slow neutron counter tube. 
 

Figure 2 – Assembled experimental setup running  
the data acquisition. 

 
As a result of this project, a low-cost and simple 

neutron flux detection device is implemented. The 
open source software with algorithms for specific 
signal shapes’ detection and recognition and the 
clean and efficient interface for user communication 
and measurement control are developed. Consistent 
measurement data were collected under different 
conditions. The future work for detection algorithms 
and device versatility improvements is outlined. 

 
2. Materials and methods 
 
2.1 Signal shapes and events counting 
Figure 3 (a)-(b) shows the typical shapes that 

could be seen in the amplifier-generated signal, 

digitized by the ADC. It is sent further down the USB 
cable to a smartphone as the raw hexadecimal data 
sequence and ultimately received and converted by 
the software to the decimal representation. If not 
hidden by the noise and other unclassified events, the 
meaningful data event contains the well-noticeable 
voltage drop from about 500 a.u. value baseline, see 
Figure 3 (a). This drop is caused by the two heavy 
ions, triton and proton, from the reaction of neutron 
capture, see Eq. 1, producing the fast ionization of the 
detector gas 
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Figure 1 – SNC18 Slow neutron counter tube. 
 

Figure 2 – Assembled experimental setup running  
the data acquisition. 
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sequence and ultimately received and converted by 
the software to the decimal representation. If not 
hidden by the noise and other unclassified events, the 
meaningful data event contains the well-noticeable 
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capture, see Eq. 1, producing the fast ionization of the 
detector gas 

 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3 + 𝑛𝑛𝑛𝑛 → 𝐻𝐻𝐻𝐻3 + 𝑝𝑝𝑝𝑝 + 0.754𝑀𝑀𝑀𝑀𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀 (1) 

 



82

³He neutron detector with Android smartphone integration                 Phys. Sci. Technol., Vol. 12 (No. 3-4), 2025: 80-88

Thus, the energy of the reaction goes to the 
kinetic energies of the proton and triton ions moving 
in the opposite direction and leaving a heavy trail of 
ion pairs. Their drift to the anode and cathode results 
in the following transient electric current in the 
detector’s circuitry [13]. Unlike a single electron 
event produced by gamma-ray Compton scattering or 
photo-effect, the amplitude of a signal from a neutron 
capture is well above the noise level. The difference 

in amplitudes of gamma ray and neutron detection 
events is regularly used to discriminate between them 
in counting. Under a better resolution, for this shape, 
one could potentially see the two overlapping peaks 
from 3H and p ions [14]. We observe similar patterns, 
see Figure 3(b), but ours are primarily from the 
overlapping of two separate events, like the 
simultaneous detection of two neutrons or one 
neutron and one gamma quantum.

 

 
 
The sampling frequency of our ADC is just not 

high enough to see the triton and proton events 
separately. Thus, depending on the event’s location 
around the detector’s physical volume and the 
detector’s state after the previous event discharge, 
multiple events’ shapes overlap and vary drastically 
in amplitudes, duration, and scaling factor. 

Next, after the signal drop down almost to the 
zero level, the preamp shapes the electronics’ 
response for the free charge surge dissipation, leading 
to the equally fast signal recovery with slight 
overshoot above the baseline. Subsequent return to 
the equilibrium is caused by the ion/electron drift and 
recombination processes being mediated by 
electronics and exhibited in the signal shape as an 
exponential decay. 

The 𝑋𝑋𝑋𝑋 axis on the Figure 3 (a)-(b) is spanned by 
the value of the buffer size supported by the hardware 

and software drivers. Documented by the software 
driver’s manual and correlated with the transmission 
rate and other parameters, the buffer size, set in the 
app by default, is 62 of the 8-byte words. The buffer 
is arranged as 31 couples of hexadecimal values. That 
is the ADC splits the three-digit voltage value into a 
pair of 8-byte words. Backwards concatenation of 
these two parts in a single 3-digit value is 
implemented in our app. 

The ADC’s 5000 𝑠𝑠𝑠𝑠𝐻𝐻𝐻𝐻𝑐𝑐𝑐𝑐−1 fixed rate for the voltage 
sampling makes this buffer size equal to the 6.2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
period. Rather crude estimate for the count speed of 
the events of comparable amplitude, even without 
referring to the Raleigh criterion, gives us about 6 
events per buffer size, or per 6.2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, that is about 
1000 counts per second. This value is greatly reduced 
by the gas-filled detector tube recovery times and 
multiple other issues. 

 

  
 

(a)                                                                (b) 
 

Figure 3 – (a) Typical signal shapes recorded from a neutron detection event in a 3He proportional counter. 
 (b) Matlab generated plot for the data piece on the left with a 5-point moving average of 50 seconds. 

To provide the stand-alone detector setup with a 
data analysis module and implement the counting 
procedure, we have developed an Android 
application to process and record the data HEX 
sequence from the detector in real time. The free 
public drivers’ library [15] was used to read the HEX 
data flow. Running on Android 3.1 version of the 
operating system and newer, it provides a 
communication interface with Arduinos and other 
USB serial hardware on Android. An extended list of 
the features provided for supported FTDI chip (our 
setup is using the one) devices includes open, close, 
setParameters, read and write, as well as many other 
flow control features. 

Thus, the three parts of the waveform of interest 
are given by a) a sudden drop in a signal level below 
the baseline, followed by b) its rather speedy 
recovery above the average baseline level, usually 
half as high as the signal drop, completed by c) 
exponential-like decay. 

We chose the event detection criteria based on the 
most prominent sudden drop below the noise level, 
corresponding to the transient current in the detector 
scheme. As soon as the data comes from a single 6.2 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 buffer, the app searches through the voltage 
values sequence and finds the first available local 
minimum in the data. Further on it tests the presence 
of the fast recovery while staying well below the nose 
level. If all selected conditions and flags are satisfied, 
the event is classified as a neutron hit. As has been 
told, the neutron and gamma-ray pulse shapes have 
rather similar forms, though a definite distinction 
could be made depending on detector type, energy 
and other major parameters of the particle, see for 
example [16]. 

 
2.2. Graphical user interface 
The app’s user interface, as seen in Figure 4, 

provides the following sequence of interactive 
windows, saving and storage options, and text output. 

The first screenshot, see Figure 4 (a), is activated 
as soon as the supported device with an FTDI chip is 
plugged in. This functionality is provided by the 
original driver’s package. The minor alterations to 
the interface were made to suit our needs and to 
remove redundant, unsupported communications 
buttons and graphical interfaces. 

As soon as the user presses the button with the 
detected communication chip, the main screen with 
measurement, display tools and buttons becomes 
available, see Figure 4(b). Data acquisition starts 
immediately as soon as the proper voltage levels 
applied to the gas tube etc. 

Figure 4(b) shows the two main parts of the 
graphical interface. The top subwindow displays the 
captured signal shapes colored in green and red 
intermittently and plotted one by one in the order of 
detection. This was done to show that these are the 
different captured buffers selected from a data stream 
with the neutron detection event and they do not 
necessarily follow each other. The buffers with data 
pieces containing noise and signal, which do not meet 
the selection criteria, are discarded and are not 
displayed. 

The bottom part of the graphical data display is 
the current count speed. The size of the time window 
is default 2 minutes but could be changed anytime by 
a user in interface. All the data fields above are 
interactive and, if changed, they affect the scale of the 
signal, the shapes’ visibility, and the detection 
sensitivity of the algorithm. Besides, any part of the 
dynamically updated graphical interface could be 
turned off to help to free CPU and GPU load. 

The next screenshot, see Figure 4 (c)-(d), shows 
the system’s data storage default path and file’s name 
containing unique time series identifier and 
timestamp. The last one, see Figure 4 (d), is the 
selected buffers data saved in decimal form as a text 
file. Alternatively, as seen in Figure 5(a)-(b), one can 
opt for the count speed vs. time output. This type of 
the data is vital in pulse shape and time series analysis 
[17]. At the present stage of development, it is 
hardcoded in order to avoid overcrowded user 
graphical interface. 

The conversion of hex to decimal data is built 
around internal Java functions. As mentioned, by 
original design, the three-digit number corresponding 
to the signal level is split by ADC into two parts and 
sent to the Android device, one part after another, in 
a single buffer of 32 numbers. Upon receiving, the 
two parts of a single data point are concatenated 
together, see HexDump part of the package, and sent 
for a further processing, that is the pattern search, see 
the event detection criteria discussed above. 
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one could potentially see the two overlapping peaks 
from 3H and p ions [14]. We observe similar patterns, 
see Figure 3(b), but ours are primarily from the 
overlapping of two separate events, like the 
simultaneous detection of two neutrons or one 
neutron and one gamma quantum.
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(a) (b) (c) (d) 

 

Figure 4 – (a)-First window after the FTDI chip was detected and program is waiting to proceed to data acquisition;  
(b)-Main active acquisition window, with preselected by algorithm signal shapes, counting speed and options for different 

acquisition parameters; (c) – automatically generated file names with the time stamp; (d) - the content of the data file. 

 
As discussed previously, the data processing is 

built around a single or several features selected as 
the neutron detection event. The whole buffer is 
scanned in a loop, and multiple events could be 
detected in a single buffer. A buffer with at least one 
event is displayed on the screen for control purposes. 

The micro USB port throughput of 480 Mbps for 
USB 2.0 is well above the required speed of the data 
flow. For the in depth analysis of the buffers with 
multiple detection events as well as for the overall 
data sequence statistics, we devised the functional 
clustering of recorded signal buffers. 

 

  
                                     (a)                                                                       (b) 

 
Figure 5 – (a) Optional, data format for count speed vs time. (b) Matlab generated plot  

for the data piece on the left with 5-point moving average of 50 seconds. 

2.3. Functional clustering approach 
The clustering of the neutron detection signals is 

performed using a model-based functional clustering 
approach, as described in [18]. This method 
incorporates functional data analysis techniques to 
classify signal waveforms into homogeneous groups, 
ensuring an accurate distinction between neutron-
induced events and background noise. 

 
2.3.1. Model formulation 
Let 𝑁𝑁𝑁𝑁 be the number of detected signal events, 

where each event 𝑖𝑖𝑖𝑖 is represented by a function 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) 
observed at discrete time points 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1, … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. The 
clustering model assumes that the data originate from 
a mixture of 𝐺𝐺𝐺𝐺 underlying groups, each characterized 
by a distinct functional pattern and potentially 
different covariance structures. 

The observed signal values 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are 
modeled as: 

 
𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖�𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� + 𝜖𝜖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 = 1, … ,𝑁𝑁𝑁𝑁, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 , (2) 

 
where 𝜖𝜖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the normally distributed 
measurement noise: 𝜖𝜖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎2). 

Each function 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) is expressed using a basis 
expansion: 

 
𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) = 𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇(𝑡𝑡𝑡𝑡)𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖 , (3) 

 

where 𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) = �𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖1(𝑡𝑡𝑡𝑡), … ,𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)�
𝑇𝑇𝑇𝑇

 denotes a 𝑝𝑝𝑝𝑝 − 
longitudinal vector of the values of the known basis 
functions of B lines, and 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖 is a 𝑝𝑝𝑝𝑝 −vector of 
unknown random coefficients. These coefficients are 
assumed to follow a Gaussian mixture model: 

 
𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 + 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 , 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖 ∨ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑘𝑘 ∼ 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖(𝜇𝜇𝜇𝜇𝑘𝑘𝑘𝑘 ,𝛤𝛤𝛤𝛤𝑘𝑘𝑘𝑘), 

 
(4) 

where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 is the latent cluster membership variable 
with prior probabilities 𝑃𝑃𝑃𝑃(𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑘𝑘) = 𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘 for 𝑘𝑘𝑘𝑘 =
1, … ,𝐺𝐺𝐺𝐺, 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 represents signal-specific within-cluster 
variability. The variability within each cluster is 
modelled through the covariance matrix 𝛤𝛤𝛤𝛤𝑘𝑘𝑘𝑘, allowing 
for differences in structure across clusters. We use the 
R package fdaMocca [19, 20] to perform this model-
based clustering method. 

 
2.3.2. Inference and estimation 
The model parameters 𝜃𝜃𝜃𝜃 = {𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘 , 𝜇𝜇𝜇𝜇𝑘𝑘𝑘𝑘 ,𝛤𝛤𝛤𝛤𝑘𝑘𝑘𝑘 ,𝜎𝜎𝜎𝜎2} are 

estimated via the Expectation-Maximization (EM) 

algorithm, which iteratively updates cluster 
assignments and maximizes the observed likelihood. 
Given a fitted model, each event is assigned to the 
cluster that maximizes the posterior probability: 

 
𝑃𝑃𝑃𝑃(𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑘𝑘 ∨ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃) ∝ 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘 , (5) 

 
where 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃) denotes the normal density given 
membership in cluster 𝑘𝑘𝑘𝑘. 

The optimal number of clusters is chosen using 
criteria such as the Bayesian Information Criterion 
(BIC) or the Akaike Information Criterion (AIC). 
The performance of the clustering model is assessed 
using entropy-based measures and cross-validation. 

 
3. Results and discussion 
 
The software was initially built for Android 

version 9.0 and lower (Lollipop), with the possibility 
of upgrading to a higher version following the recent 
changes in the security policies for the Android 
software. It performs well with moderate count speed 
values. Nevertheless, as expected, the events tend to 
overlap as soon as the neutron flux increases; see 
Figure 3(b). This puts a rough estimate of the count 
speed as 1000 events per second, based on the length 
of the transmitted buffer. Overlapping, caused by the 
digitizing hardware specification is aggravated by an 
extended hardware geometry that could register the 
multiple events simultaneously. In this case, the other 
counting algorithm is under development designated 
to analyze the overlapping signal shapes and increase 
the potential counting speed of the device. 
Additionally, the clustering analysis is offered to 
classify these events retrospectively or on the fly. 

It was found that, in long-run experiments, it is 
practical not to rely on the internal battery capacity of 
the Android device but on an extra power supply 
connected through a USB split cable connected to the 
main power supply. 

In the regime where only counting speed is of 
interest, the counted event data is dampened for every 
10 seconds or faster, which is not a problem for 
internal memory or for micro-SD card read/write 
speed. 

In the case of older devices with limited memory 
and graphics processing power, the graphical output 
for the registered signal shape could also be disabled. 
In addition to counting performance, a preliminary 
clustering analysis was performed to explore the 
structure of the recorded signal shapes. 
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(a) (b) (c) (d) 

 

Figure 4 – (a)-First window after the FTDI chip was detected and program is waiting to proceed to data acquisition;  
(b)-Main active acquisition window, with preselected by algorithm signal shapes, counting speed and options for different 

acquisition parameters; (c) – automatically generated file names with the time stamp; (d) - the content of the data file. 

 
As discussed previously, the data processing is 

built around a single or several features selected as 
the neutron detection event. The whole buffer is 
scanned in a loop, and multiple events could be 
detected in a single buffer. A buffer with at least one 
event is displayed on the screen for control purposes. 

The micro USB port throughput of 480 Mbps for 
USB 2.0 is well above the required speed of the data 
flow. For the in depth analysis of the buffers with 
multiple detection events as well as for the overall 
data sequence statistics, we devised the functional 
clustering of recorded signal buffers. 

 

  
                                     (a)                                                                       (b) 

 
Figure 5 – (a) Optional, data format for count speed vs time. (b) Matlab generated plot  

for the data piece on the left with 5-point moving average of 50 seconds. 

2.3. Functional clustering approach 
The clustering of the neutron detection signals is 

performed using a model-based functional clustering 
approach, as described in [18]. This method 
incorporates functional data analysis techniques to 
classify signal waveforms into homogeneous groups, 
ensuring an accurate distinction between neutron-
induced events and background noise. 

 
2.3.1. Model formulation 
Let 𝑁𝑁𝑁𝑁 be the number of detected signal events, 

where each event 𝑖𝑖𝑖𝑖 is represented by a function 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) 
observed at discrete time points 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1, … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. The 
clustering model assumes that the data originate from 
a mixture of 𝐺𝐺𝐺𝐺 underlying groups, each characterized 
by a distinct functional pattern and potentially 
different covariance structures. 

The observed signal values 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 at time 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are 
modeled as: 

 
𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖�𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� + 𝜖𝜖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 = 1, … ,𝑁𝑁𝑁𝑁, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 , (2) 

 
where 𝜖𝜖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the normally distributed 
measurement noise: 𝜖𝜖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎2). 

Each function 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) is expressed using a basis 
expansion: 

 
𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) = 𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇(𝑡𝑡𝑡𝑡)𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖 , (3) 

 

where 𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) = �𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖1(𝑡𝑡𝑡𝑡), … ,𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)�
𝑇𝑇𝑇𝑇

 denotes a 𝑝𝑝𝑝𝑝 − 
longitudinal vector of the values of the known basis 
functions of B lines, and 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖 is a 𝑝𝑝𝑝𝑝 −vector of 
unknown random coefficients. These coefficients are 
assumed to follow a Gaussian mixture model: 

 
𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 + 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 , 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖 ∨ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑘𝑘 ∼ 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖(𝜇𝜇𝜇𝜇𝑘𝑘𝑘𝑘 ,𝛤𝛤𝛤𝛤𝑘𝑘𝑘𝑘), 

 
(4) 

where 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 is the latent cluster membership variable 
with prior probabilities 𝑃𝑃𝑃𝑃(𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑘𝑘) = 𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘 for 𝑘𝑘𝑘𝑘 =
1, … ,𝐺𝐺𝐺𝐺, 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 represents signal-specific within-cluster 
variability. The variability within each cluster is 
modelled through the covariance matrix 𝛤𝛤𝛤𝛤𝑘𝑘𝑘𝑘, allowing 
for differences in structure across clusters. We use the 
R package fdaMocca [19, 20] to perform this model-
based clustering method. 

 
2.3.2. Inference and estimation 
The model parameters 𝜃𝜃𝜃𝜃 = {𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘 , 𝜇𝜇𝜇𝜇𝑘𝑘𝑘𝑘 ,𝛤𝛤𝛤𝛤𝑘𝑘𝑘𝑘 ,𝜎𝜎𝜎𝜎2} are 

estimated via the Expectation-Maximization (EM) 

algorithm, which iteratively updates cluster 
assignments and maximizes the observed likelihood. 
Given a fitted model, each event is assigned to the 
cluster that maximizes the posterior probability: 

 
𝑃𝑃𝑃𝑃(𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑘𝑘 ∨ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃) ∝ 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)𝜋𝜋𝜋𝜋𝑘𝑘𝑘𝑘 , (5) 

 
where 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃) denotes the normal density given 
membership in cluster 𝑘𝑘𝑘𝑘. 

The optimal number of clusters is chosen using 
criteria such as the Bayesian Information Criterion 
(BIC) or the Akaike Information Criterion (AIC). 
The performance of the clustering model is assessed 
using entropy-based measures and cross-validation. 

 
3. Results and discussion 
 
The software was initially built for Android 

version 9.0 and lower (Lollipop), with the possibility 
of upgrading to a higher version following the recent 
changes in the security policies for the Android 
software. It performs well with moderate count speed 
values. Nevertheless, as expected, the events tend to 
overlap as soon as the neutron flux increases; see 
Figure 3(b). This puts a rough estimate of the count 
speed as 1000 events per second, based on the length 
of the transmitted buffer. Overlapping, caused by the 
digitizing hardware specification is aggravated by an 
extended hardware geometry that could register the 
multiple events simultaneously. In this case, the other 
counting algorithm is under development designated 
to analyze the overlapping signal shapes and increase 
the potential counting speed of the device. 
Additionally, the clustering analysis is offered to 
classify these events retrospectively or on the fly. 

It was found that, in long-run experiments, it is 
practical not to rely on the internal battery capacity of 
the Android device but on an extra power supply 
connected through a USB split cable connected to the 
main power supply. 

In the regime where only counting speed is of 
interest, the counted event data is dampened for every 
10 seconds or faster, which is not a problem for 
internal memory or for micro-SD card read/write 
speed. 

In the case of older devices with limited memory 
and graphics processing power, the graphical output 
for the registered signal shape could also be disabled. 
In addition to counting performance, a preliminary 
clustering analysis was performed to explore the 
structure of the recorded signal shapes. 
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Nuclear physics experiment also relies on the 
historic data postprocessing, if the experiment is 
irreproducible, one-of-a-lifetime or for some other 
reasons, when some efforts are made to clean the 
data, classify the observed patterns or correct the data 
acquisition artefacts [21,22].  

The cluster analysis of the recorded signals, see 
Figure 6, resulted in the identification of the eight 
groups that reflect different types of the signal 
patterns. The number 8 of the clusters, as an input 
parameter, has been selected as a preliminary guess 
to observe the set of the features that could be found 
in the signal. At this stage these features include but 
not limited to the combinations of the full signals of 

different amplitudes or their parts, rear or head, for 
the classical neutron or gamma ray hit detection 
events plus the noise. Shape and amplitude analysis 
are available in the method making it a good tool to 
differentiate between gamma and neutron events. 

Although this is a preliminary analysis, a general 
grouping can be observed. Some clusters correspond 
to typical neutron-like signals with a sharp drop 
followed by recovery, others capture low-amplitude 
events more consistent with background noise or 
gamma interactions, and a few clusters represent 
overlapping or mixed signals where two events occur 
close in time. The future work will target the 
overlapped signals decomposition as well. 

 

 
 

Figure 6 – Estimated dynamics of the eight clusters of standardized signals. The posterior probabilities illustrate the uncertainty in cluster 
assignment and frequency over time. The colored curves in the sub-window plots represent the cluster-specific mean signals, while the 

dashed curve denotes the overall mean signal. The upper-right box provides the average of the mean and standard deviation of the signals 
within each cluster. The p-values are posterior probabilities showing the likelihood that a particular observation belongs to a cluster. 

Circumstantial visual interpretation of the clusters is the following, from left to the right, from top to bottom: 1. Cluster comprises signals 
with a sharp initial drop followed by a stable recovery, corresponding to well-formed neutron-like events; 2. Cluster includes moderate-
amplitude signals with periodic fluctuations near the baseline, typical of background oscillations or low-energy interactions; 3. Cluster 

contains short-duration pulses with a distinct early peak and rapid decay, representing fast transient detections; 4. Cluster displays nearly 
constant low-amplitude traces with minimal variance, interpreted as background noise or incomplete events; 5. Cluster groups high-

intensity pulses characterized by steep leading edges and pronounced recovery tails, consistent with strong single neutron captures; 6. 
Cluster shows overlapping waveforms of mixed amplitude, indicating partially superposed or coincident events within the buffer; 7. 

Cluster gathers a small number of very high-variance signals with large positive excursions, reflecting saturated or composite detections 
from simultaneous neutron and gamma interactions; 8. Cluster consists of weak, symmetric pulses oscillating around the baseline, most 

likely representing residual electronic noise or minor after-pulses of the detector circuit. 

Although the exact assignment of clusters to 
physical processes requires further validation, 
preliminary results indicate that the method can 
successfully separate signal shapes into meaningful 
groups. This provides an important step toward 
distinguishing neutron-induced events from noise 
and composite signals, improving the interpretability 
of the data, and laying the groundwork for a more 
refined classification in future studies. 

Estimated dynamics of the five clusters of 
standardized signals. The posterior probabilities 
illustrate the uncertainty in cluster assignment and 
frequency over time. The colored curves in the sub-
window plots show the cluster mean signals, and the 
dashed curve is the overall mean signal. The upper 
right box gives the average of the mean and standard 
deviation of the signals in the cluster. 

 
4. Conclusions 
 
We combined the low-cost and universally 

available components such as 3He detector tubes, 
ADC boards, and USB interfaces with Android 
drivers and our software, for data transfer and 
handling, to produce a simple and reliable 

measurement tool with a flexible interface and 
objectives. 

The neutron flux, transformed by a detector tube 
into an electrical signal, is digitized and sent through 
the data cable to a smartphone. The raw data, after 
being received from a signal buffer, is searched 
simultaneously for the characteristic shapes of the 
neutron detection event and treated further for hits 
counting or signal amplitude measurements to 
produce the power spectrum (yet to be implemented). 

Additionally, by employing the robust estimation 
approach, the model effectively differentiates 
neutron signal patterns from background noise and 
gamma ray events, ensuring accurate classification 
and enhanced detection performance. At present, this 
advanced retrospective analysis is done, using the R 
language, separately on a PC. Nevertheless, it could 
be ported to an Android device for on-the-fly or 
retrospective data filtering and signal analysis in 
future development. 
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Nuclear physics experiment also relies on the 
historic data postprocessing, if the experiment is 
irreproducible, one-of-a-lifetime or for some other 
reasons, when some efforts are made to clean the 
data, classify the observed patterns or correct the data 
acquisition artefacts [21,22].  

The cluster analysis of the recorded signals, see 
Figure 6, resulted in the identification of the eight 
groups that reflect different types of the signal 
patterns. The number 8 of the clusters, as an input 
parameter, has been selected as a preliminary guess 
to observe the set of the features that could be found 
in the signal. At this stage these features include but 
not limited to the combinations of the full signals of 

different amplitudes or their parts, rear or head, for 
the classical neutron or gamma ray hit detection 
events plus the noise. Shape and amplitude analysis 
are available in the method making it a good tool to 
differentiate between gamma and neutron events. 

Although this is a preliminary analysis, a general 
grouping can be observed. Some clusters correspond 
to typical neutron-like signals with a sharp drop 
followed by recovery, others capture low-amplitude 
events more consistent with background noise or 
gamma interactions, and a few clusters represent 
overlapping or mixed signals where two events occur 
close in time. The future work will target the 
overlapped signals decomposition as well. 

 

 
 

Figure 6 – Estimated dynamics of the eight clusters of standardized signals. The posterior probabilities illustrate the uncertainty in cluster 
assignment and frequency over time. The colored curves in the sub-window plots represent the cluster-specific mean signals, while the 

dashed curve denotes the overall mean signal. The upper-right box provides the average of the mean and standard deviation of the signals 
within each cluster. The p-values are posterior probabilities showing the likelihood that a particular observation belongs to a cluster. 

Circumstantial visual interpretation of the clusters is the following, from left to the right, from top to bottom: 1. Cluster comprises signals 
with a sharp initial drop followed by a stable recovery, corresponding to well-formed neutron-like events; 2. Cluster includes moderate-
amplitude signals with periodic fluctuations near the baseline, typical of background oscillations or low-energy interactions; 3. Cluster 

contains short-duration pulses with a distinct early peak and rapid decay, representing fast transient detections; 4. Cluster displays nearly 
constant low-amplitude traces with minimal variance, interpreted as background noise or incomplete events; 5. Cluster groups high-

intensity pulses characterized by steep leading edges and pronounced recovery tails, consistent with strong single neutron captures; 6. 
Cluster shows overlapping waveforms of mixed amplitude, indicating partially superposed or coincident events within the buffer; 7. 

Cluster gathers a small number of very high-variance signals with large positive excursions, reflecting saturated or composite detections 
from simultaneous neutron and gamma interactions; 8. Cluster consists of weak, symmetric pulses oscillating around the baseline, most 

likely representing residual electronic noise or minor after-pulses of the detector circuit. 

Although the exact assignment of clusters to 
physical processes requires further validation, 
preliminary results indicate that the method can 
successfully separate signal shapes into meaningful 
groups. This provides an important step toward 
distinguishing neutron-induced events from noise 
and composite signals, improving the interpretability 
of the data, and laying the groundwork for a more 
refined classification in future studies. 

Estimated dynamics of the five clusters of 
standardized signals. The posterior probabilities 
illustrate the uncertainty in cluster assignment and 
frequency over time. The colored curves in the sub-
window plots show the cluster mean signals, and the 
dashed curve is the overall mean signal. The upper 
right box gives the average of the mean and standard 
deviation of the signals in the cluster. 

 
4. Conclusions 
 
We combined the low-cost and universally 

available components such as 3He detector tubes, 
ADC boards, and USB interfaces with Android 
drivers and our software, for data transfer and 
handling, to produce a simple and reliable 

measurement tool with a flexible interface and 
objectives. 

The neutron flux, transformed by a detector tube 
into an electrical signal, is digitized and sent through 
the data cable to a smartphone. The raw data, after 
being received from a signal buffer, is searched 
simultaneously for the characteristic shapes of the 
neutron detection event and treated further for hits 
counting or signal amplitude measurements to 
produce the power spectrum (yet to be implemented). 

Additionally, by employing the robust estimation 
approach, the model effectively differentiates 
neutron signal patterns from background noise and 
gamma ray events, ensuring accurate classification 
and enhanced detection performance. At present, this 
advanced retrospective analysis is done, using the R 
language, separately on a PC. Nevertheless, it could 
be ported to an Android device for on-the-fly or 
retrospective data filtering and signal analysis in 
future development. 
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