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One of the main factors impeding further progress in the field of application of met materials is significant 
energy losses due to the physical nature of exploited plasmon resonance, and their compensation is the most 
urgent problem to be addressed by the modern science of met materials. That is why this paper studies the 
parametric interaction of electromagnetic waves and, in particular, the process of generation and amplification 
of the second harmonic generation in met materials with the negative refractive index. It is found that the 
fundamental waves in the process of the second harmonic generation cannot exchange energy through the 
second harmonic wave at the non-collinear phase matching, and, thus, further consideration is required of 
optical rectification of the field in the nonlinear met materials. 

Key words: met material, fundamental wave, second harmonic generation. 
PACS: 42.70.Qs, 42.65.-k

1 Introduction  

Recent advances in the technology of structured 
materials made it possible to create new materials 
with unusual physical properties, which are not 
encountered in nature. The best known example of 
such materials is the so-called met materials that are 
nanocomposites with the negative refractive index 
[1,2].Such unique physical characteristics can be 
obtained by using structured materials, which 
include those based on metal-insulator [3,4], metal-
organic [5,6] biological [7], and other media. 

On the one hand the linear optical properties of 
met materials are well studied at the moment. On the 
other hand the invention of powerful sources of 
coherent radiation, associated with the creation of 
lasers, led to a new field of optics, nonlinear optics, 
which gave a direct impetus to the development of 
optoelectronic devices and information technologies. 
At present the formation of nonlinear optics of met 
materials is under way, which, along with effects 
similar to those of the classical nonlinear optics, 
discloses a number of phenomena that are unique for 
met materials. It should be noted that interest in the 
theory of nonlinear optical phenomena in met 
materials is heated by the problems of both 
fundamental science and potential applications in 
technology. Possible applications of met materials are 
still hampered by essential energy losses due to the 
plasmon resonance. Compensation of those losses is 

the most urgent problem to be addressed by the 
modern science of met materials. In this regard, this 
paper studies the parametric interaction of 
electromagnetic waves and, in particular, the process 
of generation and amplification of the second 
harmonic wave in met materials with the negative 
refractive index, with further focus on the 
effectiveness of frequency conversion and 
compensation of energy losses in met materials. 

Second harmonic generation is a nonlinear 
optical process, in which electromagnetic waves 
with the same frequency interact with a nonlinear 
material to effectively generate electromagnetic 
wave with the doubled frequency. In the classical 
case, the second harmonic generation occurs in 
strongly nonlinear crystals with quadratic 
nonlinearity χ2 [8,9]. It is well known that for an 
effective second-harmonic generation in ordinary 
matter the perfect phase matching Δk = 2k1 – k2 = 0 
must be satisfied. In case of its violation a periodic 
exchange of energy between the fundamental wave 
and the second harmonic wave is observed. 

2 Non-collinear second harmonic generation in 
met materials 

Consider the process of the second harmonic 
generation in a met material with a negative 
refractive index. The phase matching is achieved by 
the interaction of two collinear waves of the 
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fundamental frequency and the second harmonic 
wave, so that 0  + -

1 1 2k k k , where ±
1k , 2k

denote the wave vectors corresponding to the pump 
waves and the second harmonic, see Fig.1. This 
situation is a generalization of the case of collinear 
second harmonic generation studied in [10]. 

In case of the non-collinear second-harmonic 
generation in a met material the pump wave and the 
second harmonic wave can be represented as 
follows: 
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Figure 1 – Non-collinear SHG process. Two pump waves 

are incident at a certain angle to the normal of the met 
material surface. The directions of the respective energy 
fluxes are characterized by Poynting vectors 1

S . and 2S , 
which is oppositely directed to the normal 

 
 
It is assumed that at the fundamental frequency

  the refractive index of the metamaterial is 
negative, and it is positive at the second harmonic 
frequency 2 . The second harmonic wave 
propagates oppositely to the normal of the 
metamaterial surface. The direction of the Poynting 
vector 2S of the second harmonic is opposite to the 

sum of the Poynting vector ±
1S of the pump waves, 

which is directed along the normal (see Fig. 1). That 
is, the second harmonic wave vector 3k is directed 
along the axis Z and the wave vectors 1k  and 2k of the 
incident waves lie in the XZ plane, so that 
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where sinx  , cosz  ,  refer to the angle 

between vectors 1k and 3k . 
The set of equations describing the non-collinear 

synchronization at the second harmonic generation 
is written as follows: 
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Here ( )

1E 

 and 2E designate the complex 
envelopes of the electric fields of the pump and 
second harmonic waves with the corresponding 
group velocities 1,2 , 1,2  stand for the coefficients 
of the nonlinear interaction. 

The mismatch in the vector synchronism Δk is 
then obtained in the form: 
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If ( )

1E   and 2E  change slowly, they can be 
expressed as 
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and wave equations (3) can be rewritten as follows:
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The last equation can be transformed to 
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in which the right side of equation (7) depends  
on z , whereas the left function singly depends  
on x . This means that the left hand side of (7) is 
constant, that is: 
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The equations for the incident waves can be 

rewritten as follows: 
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Dividing this expression by ( )

1
  gives rise to 
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Assume that
2( )

1 ( ) 1x  . Then, the equation 

for the incident wave is written as 
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Separating the variables yields 
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which allows one to conclude that
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Taking into account that
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il xe  , where 1l  are arbitrary constant. 
Finally, taking into account all the substitutions, 

equation (11) can be rewritten as: 
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Using the phase shift in the substitution
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1 1 1exp( / )x zA A il   the left hand side of 

equation (13) can be eliminated. Thus, the set of 
equations describing the interaction of three non-
collinear waves in the nanocomposite medium, i.e. a 
metamaterial with the negative refractive index, is 
found as: 
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Consider the stationary case in which the set of 

equations (14) can be rewritten as follows: 
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On substituting 2 2( ) exp( )A z a i kz   ,

0/z z x , k   , z   gives rise to the 
following set of equations in dimensionless form: 
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The normalization of the amplitude of the 

interacting waves are defined herein as
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Thus, the set of differential equations (16), 

describing non-collinear wave interaction at the 
SHG, should be solved together with boundary 
conditions (17), set at the opposite ends of the 
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The set of equations (16) can be rewritten in 
terms of amplitudes and phases, by setting 
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where 2 1 1       , 1



 and 2  denote the 
phases of the pump and second harmonic waves, 
respectively. 

The presence of a common factor sin in the 
equations above means that the exchange of energy 
between the harmonics takes place in such a way 
that the fundamental waves both lose or gain some 
energy at the same time, that is the energy exchange 
between the fundamental waves uand u through 
the second harmonic is impossible. 

The set of equations (18) has three first 
integrals, among which are the Manley-Rowe 
relations: 
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where 1,2 1 ( )m u l .  

The last equation in (18) can be easily integrated 
to give: 
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maximum value of this function is achieved at the 
point 0 1 2v m m . Taking into account the 

inequality, cos 1  allows one to conclude that, 
like in the collinear case, there are two regimes of 
the second harmonic generation. In case of 

1 22( )cr m m    , v can take any value, 
increasing indefinitely along the axis z . This in turn 
means that for the entire range energy 0 z L   the 
energy is transferred from the fundamental wave to 
the second harmonic. In case of cr  the domain 

of allowed values of v  lies in the interval 00 v v  , 
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energy between the fundamental wave and the 
second harmonic takes place along the sample, 
leading to spatial oscillations of the amplitudes of 
the interacting waves. In Figure 2, the curves of the 
function cosF  are plotted for different values 
of the amplitude of the second harmonic which 
corresponds to the solid line with 1 22( )m m   . 

For the lower curve 1 22( )m m    and in this 
case the amplitude of the second harmonic wave can 
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take arbitrary values. If 1 22( )m m   ,there are 
forbidden bands for the values of the amplitudes of 
the second harmonic corresponding to the upper 
curves. This is the so-called supercritical regime of 
the second harmonic generation. 

 
 

 
Figure 2 – The dependence of the function F = cosθ  

on the amplitude of the second harmonic at  
m1 – 0.8, m2  0.7 

 
 
Using the conservation laws (19) together with 

(18) the following equation for the intensity of the 
second harmonic is derived for 3 0m  : 
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Let the intensity of the second harmonic be such 

that 2v P   and, then, the last equation is rewritten 
in the form 
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and its solution is found as: 
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The integral on the left side is elliptical, and the 

solution of (23) can be expressed by using the 
Weierstrass function. Thus, the solution of (21) can 
be written as: 
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The invariants of the Weierstrass function 2g
and 3g are, thus, equal to: 
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A special feature of this case is that at perfect 

phase matching of 0  , the solution is expressed 
in terms of Jacobi elliptic functions : 
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Solutions for the intensities of the remaining two 

pump waves are easily found using expression 
(19).It should be noted that in the collinear 
interaction of waves solutions are expressed in 
terms of hyperbolic functions at 0  .In the case 
of |δ| > δcr = 2(m1 + m2) the second harmonic wave 
vstarts to exchange energy with the pumping waves
u   and u . Figure 3 shows the intensity of the 
second harmonic wave from as a function of the 
coordinate z . The solid curve corresponds to the 
perfect phase matching at which the energy is 
permanently transferred to the second harmonic 
along the entire sample. The dashed curve 
corresponds to the critical value of the phase 
mismatch when cr   and the energy exchange 
between the pump waves and second harmonic 



35

Momynov S.B. et al.                                          			   Phys. Sci. Technol., Vol. 2 (No. 1), 2015: 30-36

takes place along the sample, i.e. the amplitude of 
the second harmonic turns a periodic function of the 
coordinate. Thus, in contrast to the classical case, 
the effective frequency conversion in metamaterials 
is possible for the whole range of the phase 
mismatches both in collinear or non-collinear 
matching which is quite an attractive feature in 
sense of possible applications.  

 

10 1u  , 10 0.9u  , l = 1 
Solid line – δ < δcr, dashed line – δ < δcr,  

dotted line – δ < δcr 
Figure 3 – Spatial profiles of the second harmonic wave 

along the sample at different values of δ 
 
 
In the ideal phase matching solution (18) for the 

wave intensity is written as follows: 
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Note that expressions (28) are implicit solutions 

of (18), since they contain undefined parameters 
such as 1m  and 2m , which are corresponding values 
of the amplitudes of the pump waves at the right end 
of the sample u+(l), u–(l). To determine the 
dependence of 1,2m on the amplitude of the input 

value of (0)u
 the following transcendental 

equations must be solved:  
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The results of the numerical solution of 
transcendental equations (29) are shown in Figures 
4-5. Figure 4 corresponds to the case of ideal phase 
matching, in which the curve of the amplitude of the 
incident pump wave at the right end of the sample as 
a function of its value at the left end has several 
branches. The physical meaning can only be 
prescribed to the lower branch, whereas for the 
parameters of the upper branches the fields within 
the sample can take infinite values. It follows from 
the analysis of the behavior of the lower branch that 
the second harmonic reaches saturation, which 
corresponds to the total transformation of the energy 
of the fundamental waves into the energy of the 
second harmonic. 

 

 
Figure 4 – The dependence of the amplitude of the pump 

wave u+(l) = m1 on u+(0)  
 

 
Red curve: |δ| ~ δcr = (m1 + m2),  
black curve: |δ| ~ 2.2(m1 + m2),  
dashed curve: |δ| ~ 20(m1 + m2)  

Figure 5– The dependence of the amplitude of the pump 
wave u+(l) = m1 on u+(0)  



36

Nonlinear wave interactions in modern photonics                                    Phys. Sci. Technol., Vol. 2 (No. 1), 2015: 30-36

3 Conclusions  
 
The curves in Figure 5 show the intensity of the 

fundamental wave at the left end of the sample u+(0) as 
a function of its value u+(l) at the right end in the 
supercritical regime of SHG. The red curve corresponds 
to the case of  |δ| ~ δcr = 2(m1 + m2),  the black curve is 
drawn for |δ| ~ 2.2(m1 + m2), and for the dashed curve  
|δ| ~ 20(m1 + m2). For quite large values of the phase 
mismatch the dependence is almost linear, which 
actually prevents the SHG since the energy transfer 
from the fundamental wave to the second harmonic 
does not take place, and the intensity of the incident 
fundamental waves remains unchanged while passing 
along the sample. For values of the phase mismatch not 
higher than the critical one, rapid oscillations occur due 
to the periodic exchange of energy between the 
fundamental wave and the second harmonic. 

 

In a case of non-collinear phase matching it is 
found for the second-harmonic generation in a 
metamaterial with the negative refractive index that 
the fundamental waves simultaneously either lose or 
gain energy, i.e. the energy exchange between them 
through the second harmonic turns impossible. 
Nevertheless, the exchange of energy between the 
pump waves is possible the constant field appearing 
due to the optical rectification, which is always 
present in the process of the second harmonic 
generation. 
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