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We suggest a new theory for the description of electrical conductivity of semiconductor quantum nanowires. 
We take into account that oscillations of quantum nanowires lead to their self-similar deformation, and because 
of interaction between nanowires they form fractal clusters. Electrical potential of these structures is described 
via nonlinear fractal measures. We conclude that current-voltage characteristics of quantum nanowires contain 
hysteresis loops with oscillations. This fact corresponds to existence of negative differential resistance due to 
multi barrier tunneling effect in the described fractal structures.Our theoretical results have been confirmed by 
results of corresponding specific experimental study of nanoscale wire-like structures in silicon. 
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1 Introduction  
 
Silicon quantum nanowires (SiNWs) have been 

attracting considerable attention due to various 
application of nanowires in nanoelectronics, 
optoelectronics, sensor devices [1-6]. Micropho-
tographs of SiNWs show sets of separated groups of 
nanowires. Each group contains several interacting 
nanowires. It can be explained by overlapping of 
wave functions of the nanowires. So, we can 
consider such structures as quantum nanowires. 

At the present time singularities of electrical 
conductivity of quantum nanowires considered in 
theoretical and experimental studies on the base 
of Landauer’s theory [7, 8]. In a one-dimensional 
regular quantum wire density of states is 
inversely proportional to speed of electrons. In 
case of a single electron, electrical conductivity 
is a constant value expressed via the Planck 
constant and electron charge. This result follows 
from the Heisenberg's uncertainty principle also. 
Structure of quantum wires can be irregular,so, 
in this case we must take into account not only 
external potential between electrodes 
(“reservoirs”) but value of potential caused by 
internal heterogeneous distribution of electrons. 
According to [7] this potential is called the 
“scattering potential”, but its physical nature 
hasn’t been described. In order to define values 
of current we must integrate relations including 
probability density function of these potentials,  
 

and use different approximations of these 
relations: uneven (for example, via the Heaviside 
step function) and wave-like (classical). But 
irregular alternation of probability density 
function of distribution of electrons on energies 
is possible only near absolute zero. quasi-
classical description can be used in case of 
motion of quantum particles with relatively big 
impulses in a potential field with small gradients. 
In our case these conditions are improbable. 
Effective mass and impulse of an electron in a 
semiconductor are substantially less than 
effective mass and impulse of a quasi-free 
electron in a metal. Nano-sized semiconductors 
have fractal structure with sharp variations of 
potential barriers. Semiconductor nanofilms can 
be characterized by existence of hierarchy of 
similar structures with fractal dimensions in 
range of spatial scales from 10 to 103 nanometers 
[9]. Results of recent studies show that electrical 
conductivity of semiconductor nanostructures is 
a non-monotone function, andcurrent-voltage 
characteristics of such structures contain areas 
with negative differential resistance and 
hysteresis cycle. So, the aim of our work is to 
construct a simple nonlinear theory for the 
description of electrical conductivity of 
semiconductor quantum nanowires accounting 
values of potential of internal fractal structures, 
and to compare the theoretical results with our 
experimental study of SiNWs.    
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2 Model of clustering of quantum nanowires and 
theory of electrical conductivity  

 
Let us consider an ensemble of semiconductor 

nanowires. Diameter L of a nanowire is about sum 
of size of several atomic layers and the de Broglie 
wavelength   of an electron. As usual, L is about 
50 nanometers [1-6]. Nanowires can be considered 
as nonlinear objects because their properties depend 
on processes in the nanowires. Thermal fluctuations 
and non-uniform electric potential of boundary 
aggregation of molecules (ions) disturb shape of 
nanowires. The simplest and universal algorithm of 
nonlinear evolution of initially harmonic 
perturbations (leading to dynamical chaos) is 
doubling of period. Amplitude of perturbations 
decreases during a spatial period. The next period 
characterized by increasing of the amplitude. As a 
result, wave functions of two nanowires overlap 
each other (Figure 1). Next stages of evolution of 
the perturbations can lead to chaotic distribution of 
electrons in a space with cellular fractal structure. 
So, a fractal harness consisting of two wires can be 
formed in a direction perpendicular to the wire. A 
similar harness formed in three-dimensional space 
consists of three wires (πd/d = π ≈ 3). Correlations of 
third and higher order are possible also, but 
probability of this case is low. 

 

 
 

       a                          b                        c                        d 
 

а) single wire, b) harmonic perturbations of wires, 
c) doubling of perturbation period of the single wire, 

d) forming of a harness with cellular structure consisting 
of two wires in the first cycle of doubling of perturbation 

period with phase shift. 
 

Figure 1 – Model of clustering of quantum nanowires 
 
 

So, we can take into account a possibility for 
realization of more complex cycles of overlapping 
of wave functions and existence of impurity atoms. 
This approach let to obtain an image of harness of 
nanowires with fractal structure similar to 
experimental data.  Below we shall describe more 
complex evolution of perturbations than doubling of 
period. 

 
3 Quantum electrical conductivity of a fractal 
nanowire 

 
Let us consider a quantum wire with ideal 

contacts without scattering. Voltage between the 
contacts is U An electron moves inside of fractal 
cluster formed of quantum wires under the influence 
of potential V(U). We shall describe the potential 
below. Current corresponding to a single electron is 
equal to product of density of states g(E) in the 
energy range eV on speed of electrons v(E) and 
value of elementary charge e : 

 
   I g E E e  .                   (1) 

 
Let us define density of states for unit of length 

equal to distance between contacts via differential of 
impulse dP and the Planck constant h [7] as 
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.   (2) 

 
Coefficient “2” in the Eq. 2 is necessary for 

taking into account the possibility of motion of 
electrons in two (opposite) directions. From Eqs. (1) 
and (2) we have 
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where G0 is fundamental conductivity. Value G0/2 is 
called the quantum unit of conductivity, and 2R0 is 
quantum resistance. If conducting channel passes N 
electrons and M modes (one standing half-wave), 
the result follows from the Landauer’s theory can be 
written as [7] 
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where Tn,m is probability of transmissions from m – 
th mode of one contact to n – th mode of another 
contact, Nn,m(E) is number of electrons on the level 
corresponding to full energy E of the m – th and n – 
th modes. For quantum nanowires M = 1 and by use 
of delta-symbol we have 
 

      , , , ,
,

.
M

n m n m n m n m
n m

T N E N E N E 
     

(5) 

 
Let us designate relative values of potential 

V(U) between clusters with numbers i and j as 
Vij(U), and probability of this relation as  Pij. Fractal 
clusters are located chaotically, so, value of total 
potential difference can be defined as potential 
difference between ends of a circuit consisting of K 
elements.  

By analogy with Eq. (5) at k = 1 we have 
  

      
,

.
K

i j i j i j i j
i j

P V U V U V U           (6) 

 
Function V = V(U) called the “scattering 

potential” (according to [7]) in our case can be 
considered as a nonlinear fractal measure 
characterizing metastable states. We consider 
measure as a measurable additive value. As usual, 
fractal measure can be defined by scale of 
measurement  depending on structure of an object. 
Structure of nanowires changes according to applied 
voltage U. Therefore, we must choose scales of 
measurement corresponding to variations of the 
measure as 
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V U U
U V U

    
 
  (7) 

 
Indexes at δ describe the determining variables. 

Values δU and δV can be used for the description of 
metastable threshold phenomena at .U V  We can 
describe the scattering potential via Eq. (7) and 
definition of nonlinear fractal measure leading to the 
Hausdorff’s formula for fractal dimension by the 
following way: 
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where D is fractal dimension of the set of values 
V(U), d is its topological dimension. Eqs. (8) 
contain only difference between D and d. Therefore, 
these relations can be used for the description as 
geometrical as physical spaces. At  = 0 we have 
V(U) = V0 which is a non-fractal (for regular 
structures) value of V(U). 

We can use V0 = Eg as a rank value, where Eg  is 
band-gap energy of silicon measured in electron-
volts. Choice of V0 = Eg  as a rank value can be 
explained by the fact that this value characterizes 
interruption of energy on boundaries of structures 
(Brillouin zones). 

Equation (3) defines value of current in a regular 
(non-fractal) nanowire. Fractality is an integral 
characteristic. Electrical conductivity is a 
differential, local characteristic. Therefore, we use 
an expression for fractal measure for resistance R(U) 
instead of R0. In this case from Eqs. (3)-(8) we have 
the following system of equations for the 
description of current in a nanowire: 
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Values of current influence on properties of 

nanowires, so, we can use difference between 
current and V0/R(U) as a determining variable in Eq. 
(11). Resistance R depends on length of a fractal 
nanowire considered as fractal measure, and can be 
expressed via relative scale of length /L as 
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  (12) 

 
where   is the de Broglie wavelength, L is size of 
an area including nanowires, 2R0 is quantum 
resistance. D is fractal dimension of an area (D > 3) 
including considered fractal wires (d = 1), therefore, 
2 < (D – d) < 3. 

Fine structure of quantum nanowires can be 
described via relation for second generation of 
hierarchical structure of cluster potential as 
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4 Results of numerical analyses and experiment 
 
All parameters of our theory have a certain 

physical meaning. So, we can choose values of these 
parameters according to a considered problem. 

At first, let us define V(U, δU) according to Eq. 
(8). In order to choose value of the parameter 

D d    we take into account that generally d 
isn’t equal to the greatest integer part of D. For a 
one-dimensional curve V(U) d – 1,1 < D < 2 
therefore, 0 1.  0 1.12gV E   eV for silicon. 
Curve V(U, δU) is non-monotone, there are several 
peaks at 0U V . Amplitude of the peaks growths 
with increasing of  (Figure 2). 

 
 

(a) 

 

 

(b) 

 

 
 

Figure 2 – Curves  , UV U   and  , VV U   for different   according to Eqs. (8) at 0 1.12V  V. 
 
 

V0 = Eg is maximal value of negative potential 
of an electron localizing in a cluster. So, values of 
modulus V(U, δU) should be considered as values of 
potential effecting on electron. Sign of the potential 
equals to sign of U (determining variable for relative 
scale of measurement). For correct choosing of 
determining variable of the required potential V(U, 
δU) at U = 0 we must take into account value of 
eigen potential barrier of the cluster 
  00,V U U V  . 

 
 
 

Dependence I = I(U) described by Eqs. (9)-(11) 
has sharp oscillations at U ≈ V0 and saturates at  
U > V0 (Figure 3). Curves I(U) are intersects each 
other at different 1 and 2. In the cross points one 
metastable state with parameter of fractal dimension 
1 transfers to another metastable state characterized 
by 2. Hysteresis curves (universal physical 
phenomena in mediums with metastable states) are 
located between the cross points of curves I(U).  
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Figure 7 – Scheme of electrical contacts of the sensor  

with vertical SiNWs (vertical contact). 
 

 

 
 

Figure 8  – Experimental current-voltage  
characteristics of SiNWs 

 
 

A similar dependence I(U) follows from Eqs. 
(9)-(13) (Figure 9). According to Eq. (10) at the 
absence of external field value of potential of cluster 
affecting on electrons V(U) – 0, therefore,  I|U=0 – 0. 
Growth of U leads to increasing of V(U), resistance 
of quantum nanowire decreases (according to Eq. 
(11)), and I(U) increases sharply. At further growth 
of U value of V(U) tends to V0, and current 
saturation is observed. But at U  – V0 function V(U) 
became a nonlinear fractal measure, and I(U) pulses. 
It indicates to existence of multi-barrier tunneling 
effect leading to negative differential resistance at 
V(U) – V0. 

In non-fractal crystal ( 0  ) 
0

0 RV V  at  

0 < U < V0, and inclination of I(U) doesn’t change. 
It’s equivalent to using of V(U, δV) in Eq. (8), i.e. we 
use V(U) – V0. as a main variable (instead of U). 
Therefore, we have I = V(U) – V0/R0 at U = 0. For 
more precision description of the dependence I(U) 
we can take into account second generation of 
fractal hierarchy of potential according to Eq. (13). 
In this case we can notice an insignificant growth of 
inclination of the curve I(U) relative to abscissa axis 
in comparison with this dependence shown in 
Figure 3 at the same . 

 
 

Figure 9  – Theoretical  current-voltage characteristics of 
SiNWs with taking into account their fractal hierarchy 

according to Eqs. (9)-(13) for different  at 28R  MΩ, 

0 1.12V  eV, :  – 0.095,  – 0.128. 
 
 
Hysteresis in current-voltage characteristics have 

been observed in different experiments. For example, 
electrical conductivity of Au/pentacene/Si-nanowire 
arrays has been studied in [4]. Existence of negative 
differential resistance has been registered in recent 
works, for example, in current-voltage characteristics of 
nanowires and nanobelts ZnO [13, 14]. But quantitative 
descriptions of singularities of these effects haven’t 
been suggested in the works.We suppose that taking 
into account the fractal structure of nonlinear quantum 
nanowires let us to obtain the new results.  

Thus, our theoretical results obtained via Eqs. 
(9)-(13) and experimental data adequately describe 
main physical singularities of electrical conductivity 
of semiconductor quantum nanowires. 

 
5 Conclusions 

 
Electrical conductivity of nanoscale wire-like 

structures depends on value of internal potential of 
fractal clusters. Scattering potential of the clusters 
can be considered as a nonlinear measure defining 
by value of external voltage.  

Fractality of geometry of wire-like formations leads 
to appearance of multi-barrier effects in nanoscale wires 
grown on surfaces of homogeneous films (silicon). 
Because of this fact the current-voltage characteristic of 
SiNWs has areas with negative differential resistance 
and hysteresis loops. Previously such effects have been 
observed in silicon compounds and heterostructures, but 
in the present work we describe this phenomena in pure 
silicon. Results of the present work can be used for 
perfection of electronic memory schemes, devices of 
nanoelectronics and optoelectronics. 
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