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In this work the dielectric function of the dense semiclassical collisionless plasmas was investigated on the 
basis of the interaction potential which takes into account the effects of diffraction in a wide range of 
temperatures and densities. The dielectric function was analytically and numerically investigated in 
approximation of high frequencies. We obtained the expression for the real part of the dielectric function for 
collisionless plasma in high – frequency limit within asymptotic approximation. All obtained results are in a 
good agreement. Taking into account of the diffraction effect in a wide region of temperature and densities can 
lead to perceptible change in the dielectric function. 
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1 Introduction 

It is well known that the dielectric function 
plays a key role in description of the electro-
dynamic plasma properties. Using it one can 
describe the spectrum of the plasma waves, optical 
properties as well as many other phenomena [1-3]. 
In the dense plasmas the influence of the many-
body effects and quantum mechanical effects 
increases. In this case the dielectric function can 
significantly differ from the dielectric function of 
the rarefied plasma. To adequately determine the 
dielectric function it is necessary to know the 
interaction potential of the plasma particles. 
Development of the particle interaction models and 
study of the strongly coupled dense plasmas 
properties on their basis are of a great fundamental 
and practical interest [4-9]. To take into account 
quantum mechanical effects in the interaction 
potential the special method was developed. It 
consists of the comparison of the classical 
Boltzmann’s factor and the quantum mechanical 
Slater sum. This approach was first described in 
[10]. The Deutsch potential [8,9], which correctly 
considers the diffraction effect only at high 
temperatures, has the following form: 
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Here 2 Bm k T    is the de Broglie 

thermal wavelength;  /m mm m m       – is the 

reduced mass of   and   interacted particles. In 
this work the following dimensionless parameters 
were used: 2 /( )BZ Z e a k T    is the coupling 
parameter (the average distance between particles is 

 1/33/4a n ; e in n n   is the numerical 
density of the electrons and ions; T  is the plasma 
temperature; 

Bk  is the Boltzmann constant); 

Bs aar /  is the density parameter ( 22 / ema eB   is 
the Bohr radius).  

In work [11] the interaction micropotential of 
the dense semiclassical plasma was obtained on the 
basis of the method [10] with help of interpolation 
of the numerical results in a wide region of 
temperatures and densities: 
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where a  is the average distance between particles. 
This micropotential (2) takes into account the 
quantum diffraction effect in a wide region of 
temperatures and densities.  

Dielectric function ( , )k   is defined as the 
value characterizing the magnitude of charge 
screening in plasma. Dielectric function of the 
collisionless plasma in high – frequency limit can 
be presented by the following expression [1]: 
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where ( )ee k  is the Fourier transform of the 
interaction micropotential between the electrons, 
the response function of the system of non-
interacting particles is: 
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where Tev  is the thermal velocity of the electrons, 
k  is a wave vector. 
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Function ( )W z  in the asymptotic expansion at 

the high-frequency approximation / 1Tekv   is  
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2 Tasks and results 

 
In this work the dielectric function of the dense 

semiclassical plasma was obtained on the basis of 
the potential (2). For obtaining of analytical 
expression for the dielectric function the exponents 
and tangent in the potential (2) were expanded and 
only the first term, giving the main contribution, 
was taken into account. The Fourier transform of 
such simplified form of the interaction potential (2) 
was deduced analytically and then we obtained the 
following expression for the real part of the 
dielectric function for collisionless plasma in high – 
frequency limit within asymptotic approximation  
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here dimensionless wave vector and frequency are 

* / p   , *k ka , where 24 /p e en e m   
is the electron Langmuir frequency. Real part of the 
dielectric function within the Coulomb potential in 
this approach is presented by the following 
expression: 
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Real parts of the dielectric functions obtained 
by formula (7) and also for the Coulomb potential 
by formula (8), and for the Deutsch potential are 
shown in Fig. 1, 2. One can see that, the real part of 
the dielectric function obtained on the basis of the 
potential (2) (expression (7)) lies above the other 
curves and tends to the data obtained on the basis of 
the Deutsch potential at decreasing of the coupling 
parameter. 
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Figure 1 – The real part of the dielectric function  
obtained on the basis of: 1 – formula (8);  
2 – the Deutsch potential; 3 – formula (7).  

Г = 0.5, ka = 0.1, rs = 5  
 
For more precise estimation of the dielectric 

function we used again the equations (3), (4) and 
(6) but instead of an analytical expression for the 
Fourier transform of the potential (2), we used 
numerical method for its calculation. As a result we 
received data, which agrees qualitatively with the 
formula (7) (Fig. 3). 
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Figure 2 – The real part of the dielectric function  

obtained on the basis of: 1 – formula (8);  
2 – the Deutsch potential; 3 – formula (7).  

Г = 1, ka = 0.1, rs = 5  
 
 
In the third approach we obtained the dielectric 

function on the basis of the numerically calculated 
( )W z (eq.(5)). Obtained results are presented on  

Fig. 4-6.  

On fig. 4 and 5 one can see that the curves 
obtained on the basis of the Deutsch potential and 
potential (2) are close to each other and differ from 
result obtained on the basis of the Coulomb 
potential at increasing of the coupling parameter. 
Wherein the result on the basis the potential (2) 
differs stronger than that on the basis of the 
Deutsch potential. On fig. 6 the dielectric functions 
obtained on the basis of the potential (2) at different 
values of the coupling parameter are shown.  

Based on all the obtained results one can 
conclude that taking into account of the diffraction 
effect in a wide region of temperature and densities 
can lead to perceptible change in the dielectric 
function.  
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Figure 3 – Numerical calculation of the dielectric 
function in the asymptotic approximation obtained on 
the basis of: 1 – formula (8); 2 – the Deutsch potential;  

3 – the potential (2). Г = 0.1, ka = 0.1, rs = 5  
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Figure 4 – Dielectric function obtained without 
asymptotic expansion on the basis of: 1 – the potential 

(2); 2 – the Coulomb potential; 3 – the Deutsch potential;  
4 – formula (8). Г = 5, ka = 0.78, rs = 1  
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Figure 5 – Dielectric function obtained without 

asymptotic expansion on the basis of : 1 – the potential 
(2); 2 – the Coulomb potential; 3 – the Deutsch potential;  

4 – formula (8). Г = 0.5, ka = 0.78, rs = 1 
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Figure 6 – Dielectric function obtained without 

asymptotic expansion on the basis of the potential (2) at 
different coupling parameter,  

ka = 0.78, rs = 1, 1) Г = 0.5, 2) Г = 1, 3) Г = 3, 4) Г = 5, 
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