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The equilibrium configurations of uniformly rotating white dwarfs are calculated in the framework of 
classical physics. The Chandrasekhar and the Salpeter equations of state are used to describe the white dwarf 
matter. The Hartle formalism is applied to the integration of the equations of hydrostatic equilibrium and field 
equations. The equations of structure have been expanded in powers of the angular velocity Ω of the white 
dwarf, and terms of higher order than Ω� have been neglected.All parameters of rotating white dwarfs such as 
the total mass, polar and equatorial radii, eccentricity, moment of inertia, angular velocity, angular 
momentum, gravitational potential and quadrupole moment have been calculated numerically within this 
approximation. 
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1 Introduction 
 

In order to investigate the equilibrium structure 
of non-rotating and rotating white dwarfs in the 
Newtonian physics a number of authors have 
calculated in greater detail the classical equilibrium 
configurations of cold white dwarfs [1, 2]. In the 
literature among all those approaches the Hartle 
formalism in the classical case has been neglected, 
probably due to its relativistic counterpart, which is 
widely used in the scientific community to describe 
relativistic objects such as neutron stars, quark stars, 
and other exotic objects [3-5]. 

In our recent work [6] we have revisited the 
Hartle formalism in the classical case, giving 
detailed derivations of all the physical quantities 
such as the total rotating mass, the equatorial and 
polar radii, eccentricity, moment of inertia both for 
non-rotating and rotating configurations, and 
quadrupole moment. All these parameters play a 
pivotal rolein the investigation of the stability and 
the lifespan of white dwarfs, main sequence stars 
and giant stars[7-9]. 

In this work we investigate the effects of 
angular velocity on the structure of white dwarfs. 
We examine the case of white dwarfs which rotate 
rigidly and slowly. We integrate the equations of 
structure for slowly rotating white dwarfs 

numerically for the Chandrasekhar and Salpeter 
equations of state [10, 11]. 

 
2 Equation of structure 

 
The method used to construct models for 

uniformly and slowly rotating stars is summarized 
briefly here [3, 6].  

 
Equation of state. 
As the first step in the calculation of a slowly 

rotating stellar model, one-parameter equation of 
state, � � �(�), is specified. Here � is the pressure, 
�  is the matter density. For white dwarfs this 
relation will be one of the equations of state 
summarized in [11-14]. 

 
Non rotating white dwarfs.  
For a given value of the central density, the 

non-rotating equilibrium configuration is 
determined by integrating the Newtonian equation 
of hydrostatic equilibrium for the pressure, �(�)(�), 
and the mass interior to a given radius, �(�)(�): 

 

�
��(�)(�)

�� � ��(�) ��(�)(�)
�� ,

��(�)(�)
�� � �����(�).

 (1) 
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The integration is performed outward, starting 
at the star’s center, � = 0 . At the star’s center 
�(�)(� = 0) = 0 ; �(� = 0) = ��  is the given 
central density; and �(�) is �(�)(��) as given by the 
equation of state. The radius of the spherical 
surface of the star, �, is that value of � at which 
�(�)(�) drops to zero; and the value of �(�)(�) 
there is the star’s total static mass. 

The gravitational potential of a non-rotating star 
is determined by integrating outward from the 
center the equation 

 
�Φ(�)(�)

�� = ��(�)(�)
�� = − �

�(�)
��(�)(�)

��          (2) 
 

with the boundary conditionΦ(�)(∞) = 0. 
The moment of inertia of a spherical star is 

calculated easily from the following expression: 
 

�(�)(�) = ��
� � �(�)����.�

�              (3) 
 
Values for the central density and angular 

velocity.  
Once the equation of state is specified, there is a 

unique equilibrium configuration for each choice of 
the central density and angular velocity. The small 
perturbations away from a non-rotating equilibrium 
configuration are all proportional to the angular 
velocity or to its square. Consequently, for a given 
central density, all the models of different angular 
velocities can be obtained from a single model by 
applying an appropriate scaling. In this paper the 
results are given in graphical form for the angular 
velocity Ω satisfying 

 

Ω = ������
���

,  (4) 

 
where �  is the gravitational constant, ����  is the 
total mass of the rotating configuration and�� is its 
equatorial radius. This is the critical angular 
velocity at which mass-shedding will occur, and it 
is thus a natural upper bound on those angular 
velocities for which the assumption of slow rotation 
could be valid. Knowing the values of moment of 

inertia �(�)  and the angular velocity Ω  one can 
determine the angular moment of a spherical star by 

 
� = �(�)(�)Ω.  (5) 

 
Having chosen a value of the angular velocity 

for each value of the central density, one constructs 
a sequence of equilibrium models by integrating the 
Newtonian equations of structure for a sequence of 
central densities. 

 
The spherical deformation of the star. 
The spherical part of the rotational deformation 

is calculated by integrating the� = 0equations of 
hydrostatic equilibrium for the “change in mass” 
�(�)(�)  and the “pressure perturbation function” 
��∗(�): 

 

�
���∗(�)

�� = �
�Ω

�� − ��(�)(�)
��

��(�)(�)
�� = �����(�) ��(�)

�� ��∗(�),
,      (6) 

 
These equations are integrated out from the 

origin with boundary conditions that as � → 0 
 

��∗(�) → �
�Ω

���, �(�)(�) → 0.   (7) 
 

These boundary conditions guarantee that the 
central densities of the rotating and non-rotating 
configurations are the same. Consequently, the total 
mass of the star with central density �� and angular 
velocity Ω is 

 
���� = �(�)(�) + �(�)(�),            (8) 

 
where � is the radius of the spherical configuration. 

 
The quadrupole deformation of the star.  
One calculates the quadrupole part of the 

deformations by integrating the � = � equations. 
Firstly, one needs to findparticular solution by 
integrating equations 

 

 

�
��(�)

�� = − ���(�)
�� �(�) + ��

� Ω�����(�)
��(�)

�� = ������(�)
�(�) − �

�� �(�) − ��(�)
��(�) + ��

��(�) �Ω���                                        (9) 

 
 



68

Non-rotating and slowly rotating white dwarfs in classical physics              Phys. Sci. Technol., Vol. 2 (No. 1), 2015: 66-71

 
outward from the center with arbitrary initial 
conditions satisfying equations 

 
�(�) � ���,      
�(�) � ���,      

� + ��
� ���� = ��

� ���Ω
�,  (10) 

 
where �  and �  are arbitrary constants. Set, for 
example, � = 1  and define �  from the above 
algebraic equation. This determines particular 
solutions ��(�) and ��(�). 

Secondly, the homogeneous solution should be 
considered by integrating the homogeneous 
equations 

 

�
���(�)

�� = − ���(�)
�� ��(�)

���(�)
�� = ������(�)

�(�) − �
�� ��(�) − ���(�)

��(�)
    (11) 

 
outward from the center with arbitrary initial 
conditions satisfying the equations  

 
��(�) � ���,     
��(�) � ���,     

 � + ��
� ���� = �          (12) 

 
Set � = 1 and � is given by the above equation. 

This determines particular solutions ��(�)  and 
��(�). Thus interior solution is determined by the 
sum of the particular and the homogeneous solution 

 
���(�) = ��(�) + ����(�),    

   ���(�) = ��(�) + ����(�).     (13) 
 
Matching with the Exterior Solutions.  
The exterior solutions are given by 
 

���(�) = ��
�� ,     ���(�) = ����(�)

��� .       (14) 
 

By matching (13) and (14) at (� = �) 
 

���(� = �) = ���(� = �),  
    ���(� = �) = ���(� = �).      (15) 

 
constants �� and �� are determined. 

 
 
 

 
The polar and equatorial radii and eccentricity. 
The surface of the rotating configuration, polar 

�� and equatorial �� radii are given by 
 

�(�,Θ) = � + ��(�) + ��(�)��(Θ),       (16) 
 

�� = �(�, �) = � + ��(�) + ��(�),          (17) 
�� = �(�, � �⁄ ) = � + ��(�) − ��(�) �⁄ ,    (18) 

 
where ��(�) and ��(�) are given by 
 

��(�) = ��

��(�)(�) ��∗(�),  (19) 
 
 

��(�) = − ��

��(�)(�) ��
�Ω

��� + ���(�)�. (20) 
 

The eccentricity is defined by 
 

eccentricity = �1 − ���
��

��
.        (21) 

 
Quadrupole moment.  
The Newtonian potential Φ(�,Θ)  outside the 

star (� � �)is given by 
 
Φ(�,Θ) = − �����

� + ��
�� ��(cosΘ),         (22) 

 
thus the constant ��  can be written as �� = �� , 
where � is the mass quadrupole moment of the star. 
According to Hartle’s definition � � � defines an 
oblate object, � � � defines a prolate object. 

 
Total moment of inertia and total angular 

momentum.  
The total moment of inertia of a rotating 

configuration is determined as the sum of the 
moment of inertia of a static star and the change in 
the moment of inertia due to rotation and 
deformation 

 
����(�) = �(�)(�) + �(�)(�),   (23) 

 
where the moment of inertia of the non-rotating star 
is determined as earlier 

 
�(�)(�) = ��

� � �(�)����,�
�                (24) 
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and its change due to rotation is given by [15]
 

 

�(�)(�) = ��
3 � �(�)�� ����(�)�� − 1

5
���(�)
�� + 4

� ���(�) −
1
5 ��(�)�� ��

�

�
 

    (25) 

= ��
3 � ��15 ��(�) − ��(�)�

��(�)
�� �����

�

�
 

 
 

From here the total angular momentum of a 
rotating configuration will be determined by 

 
���� = ����(�)Ω.   (26) 

 
Thus, we have all the necessary equation to 

investigate equilibrium configurations of classical 
white dwarfs. 

 
3 Results and discussion 

 
In equilibrium, a rotating star attains a balance 

between pressure forces, gravitational forces, and 
centrifugal forces. In classical physics the 
magnitude of the centrifugal force is determined by 
the angular velocity Ω  of the fluid relative to a 
distant observer. In the literature angular 
velocityΩgiven by (4) is usually known as mass-
shedding or Keplerian angular velocity. 

In Fig. 1 the mass of a white dwarf is shown as 
a function of the central density. The mass is given 
in the units of one solar mass and the central 
density is given in grams per centimeter cube. We 
have selected two equations of state: the 
Chandrasekhar equation of state with average 
molecular weight � = �, and the Salpeter equation 
of state for carbon and iron white dwarfs as a 
limiting case. All solid curves indicate non-rotating 
(static) white dwarfs, whereas all dashed curves 
indicate rotating white dwarfs at the mass-shedding 
rate. As it has been expected rotating white dwarfs 
have larger masses with respect to their static 
counterparts. In all our computations we restricted 
the values of the central density to the values of 
inverse beta decay density to fulfill the stability 
condition of white dwarfs [14]. In classic white 
dwarfs the maximum (threshold) value of the 
central density is considered to be the minimum 
value between the density for the onset of inverse-
beta decay process[13,16]. 

Figure 2 shows mass and equatorial radius 
relation. The equatorial radius reduces to the static 
radius in the non-rotating limit. All legends in the 
plot are the same as in Fig. 1. Depending on the 
equation of state and chemical composition, white 
dwarfs display different mass-radius relation. This 
explains the variety of observed white dwarfs. 
Nowadays, we have data for 9316 white dwarfs and 
all of them have diverse characteristics [17, 18]. 

Figure 3 illustrates normalized moment of 
inertia as a function of the central density. The 
legends are the same as in Fig.1. The lower the 
density the larger the difference in the moment of 
inertia of rotating and static white dwarfs. 

 

 
 

Figure 1 – Mass versus central density  
(see the color version on the web) 

 

 
 

Figure 2 – Mass versus equatorial radius  
(see the color version on the web) 
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Figure 3 – Moment of inertia versus  
central density 

 

 
Figure 4 – Eccentricity versus central density 

 
 
The eccentricity of rotating white dwarfs as a 

function of central density is shown in Fig. 4. For 
higher densities the eccentricity decreases and vice 
versa. Thus, white dwarfs in this case become more 
spherical as they approach their maximum mass. 

The normalized mass quadrupole moment 
versus eccentricity is represented in Fig. 5. The 
legends are the same as in Fig. 1. Here one can see 
that for larger densities the eccentricity and 
quadrupole moment are correlated. The quadrupole 
moment decreases as well with increasing density. 
The system becomes more gravitationally bound. 

 

 
 

Figure 5 – Quadrupole moment versus eccentricity 
 
 
 

4 Conclusion 
 
The equations have been numerically integrated 

in order to calculate the structure of slowly rotating 
classical white dwarfs in hydrostatic equilibrium. In 
particular, the relation between mass and central 
density, the shapes of rotating stars have been 
calculated for the Chandrasekhar and Salpeter 
equations of state. 

The equations which determine the moment of 
inertia and the quadrupole moment of the rotating 
star have also been integrated numerically. The 
product of the moment of inertia and the angular 
velocity determines the angular momentum of a star. 

All these quantities play a fundamental role in 
describing the equilibrium configurations of 
uniformly rotating main sequence stars as well as 
planets. The results obtained in the work are in 
agreement with other work in the literature related 
to the rigidly rotating white dwarfs in the 
Newtonian physics [19-20]. 
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