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In this paper we consider the formation on the surface of silicon by metal-induced chemical etching, the silicon 
nanowires and the study of their electron (SEM) and (TEM) microscopy, X-ray diffraction (EDX) analysis and 
electron backscatter diffraction (EBDS) in nanowires. Combination of field emission SEM and EBSD possible 
to determine the orientation of the individual grains, the local texture oriented correlation on solid surfaces of 
polycrystalline material. This method of producing silicon nanowires has a number of the above-mentioned 
advantages over other methods. In addition, the studied objects themselves exhibit interesting optical 
properties, such as the localization of light, photoluminescence (PL), very low reflectance (<10% at 300-800 
nm) [1] and high absorption [2] (> 90% at 500 nm). 
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1 Introduction 
 
It is now one of the fastest growing areas in 

physics is the study of the fundamental properties of 
solid-state nanostructures and nanomaterials 
produced using the latest nanotechnology [3]. This 
work is devoted to the study of nanostructures of 
silicon obtained by chemical and electrochemical 
etching of single crystal silicon, as well as exploring 
the possibilities of using such properties in 
photovoltaic applications [4]. 

Very interesting material for research from this 
perspective proved silicon nanostructuring 
modifications which have different morphologies 
thanks to its unique properties can be used in key areas 
of life of modern people, such as nanoelectronics, 
photonics, energy and biomedicine. [5] 

In this paper considered the technology of 
producing silicon nanowires using metal induced by 
chemical etching of silicon wafers. The content of this 
method is that the surface of the crystalline silicon pre-
coated with silver, followed by a redox reaction, and 
then etched in a solution comprising HF: H2O2. 

Metal-stimulated etching is appealing for 
researchers because it is cost-effective and simple 
method of forming silicon nanostructures with the 
possibility of controlling their parameters (such as 
length, diameter, orientation, type and level of 
doping) [6]. 

In the current study, monocrystalline silicon 
nanowire arrays (SiNWs) were prepared through a 
metal-assisted wet chemical etching method of silicon 
wafers in an etching solution composed of HF and 
H2O2. Morphology properties of the monocrystalline 
SiNWs are improved greatly with the formation of the 
nanostructure on the silicon wafers. By controlling the 
hydrogen peroxide concentration in the etching solution, 
SiNWs with different morphologies and surface 
characteristics are obtained. 

Subsequently, the silicon surfaces were 
immersed into the first solution (thermostateted by 
920°С) containing 5M HF and 0.01 M AgNO3 [7]. 
The effect of silver nanoparticles growth on 
different crystallographic oriented silicon wafers 
was investigated.  

 
2 Experiment 

 
The crystalline of the silver nanostructures on the 

silicon surfaces was investigated in cross-section view 
using coupling of scanning electron microscopy and 
electron backscatter diffraction. The SEM+EBSD 
pattern results are presented in Fig. 1. The 
crystallography studies based on EBSD and 
stereographic pole-figure on the surfaces covered with 
silver nanostructures present the polycrystalline nature 
of the silver nanoparticles deposited in the first step of 
the electro-less etching of silicon surfaces. 
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Figure 1 – Scanning electron microscopy micrographs  

of silver nanostructures deposited on silicon surfaces with different doping level. 
 
 
The results are presented in Fig 1. Structural 

analysis of the silver nanostructures was carried out 
by field emission scanning electron microscopy 
(Carl Zeiss ULTRA 55). 

On the left side the silver nanostructures grown on 
the <100> and on the right side <111>-oriented wafers 
are displayed. It is clearly visible that the orientation of 

the silicon substrate does not affect the morphology of 
the silver deposition on silicon. In Fig 2, the deposits are 
shown for n-doped silicon with an orientation of <100> 
and <111>. In the right column, the deposits with a low 
doped substrate are displayed, in the left column, the 
nanostructures with a highly doped substrate are 
presented. 

 
 

 
Figure 2 – SEM and EBSD pattern on silver nanostructures  

deposited from AgNO3/HF solution on Si(100) surface. 
 
 
After a uniform layer of Ag nanoparticles was 

coated, the wafers were then immersed in the 
etchant solution composed of HF, H2O2, and H2O 
(the volume ratios HF/H2O2: 1:10, 1:20, 1:30, 1:40) 
at room temperature in a sealed Teflon vessel. The 
Si wafers were immersed in a solution of 

concentrated nitric acid solution to remove the 
excess Ag nanoparticles, rinsed with deionized 
water, and then dried in vacuum at 60°C. Structural 
analysis of the silicon nanostructures was carried 
out by field emission scanning electron microscopy 
(FEI Helios NanoLab FESEM).  
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The dependence is nonlinear and it can be fitted 
by the following expression: 

 
L = Ctα,                               (1) 

 
where, L the SiNWs length, t is the MAWCE time, 
and C and α are constant coefficients. The 
coefficient α was calculated from the data presented 
in Fig 3 and it is accounted 0.75.   

Scanning electron microscopy images of the as-
grown silicon nanowires from the phosphorous doped 
n-Si (100) wafers with different concentrations of 
H2O2 are summarized in Fig 3. For 1:40, lowly 
porous nanowires were obtained as shown in SEM 
images Fig 3d. With increasing the concentration of 
H2O2, the silicon nanowires first become increasingly 
rough on the surface, then start to evolve porous 
shells surrounding the solid cores, and eventually 
form entirely porous nanowires. 

 
 

a B 

c d 
 

Figure 3 – SEM cross-sectional views of silicon (100)-oriented silicon wafers  
after metal-assisted etching using:  

a) 1:10 H2O2/HF; b) 1:20 H2O2/HF; c) 1:30 H2O2/HF; d) 1:40 H2O2/HF. 
 
 
These studies clearly demonstrate that the 

increase portion of the nanowires becomes porous 
with the decrease of the H2O2 concentration. Our 
results show that the increase of hydrogen peroxide 
concentration can result in increasingly porosity of 
nanowires. Since H2O2 itself cannot etch the Si off, 
the formation of porous structures should by 
facilitated by the metal nanoparticles [8]. 

 

3 Energy Dispersive X-Ray analysis 
 
The chemical composition of silicon 

nanostructures was investigated using Energy 
Dispersive X-Ray analysis coupled on Bruker EDX 
system. The typical EDX spectra of silicon 
nanowires after cleaning with HNO3 (remove of 
silver nanoparticles) is presented in Fig 4. 
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