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In this paper, the optical conductivity of a two-dimensional surface material of graphene is theoretically 
investigated. An effective method for interpolation of the surface conductivity of grapheme is proposed and 
worked out in the form of a polynomial expansion in Drude conductivities. The proposed expression will 
significantly facilitate further FDTD (Finite Difference Time Domain) numerical simulations of optical 
phenomena in the layered hyperbolic medium based on graphene-dielectric sandwich structure. 
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1 Introduction 
 
It was rather recently demonstrated both 

theoretically and experimentally that graphene is a 
two-dimensional crystal lattice of carbon atoms that 
exhibits a wide range of unique properties [1-3]. 
For example, the motion of free electrons inside of 
a two-dimensional structure of graphene can be 
described by the Dirac equation since charge 
carriers in graphene have linear dispersion law 
(dependence of the electron energy on their wave 
number) near the Dirac points. As a consequence, 
various transport effects, characteristic for Dirac 
fermions, can be observed in grapheme including 
the quantum Hall effect, the conductance 
quantization in strong magnetic fields and low 
temperatures, Shubnikov-de Haas oscillations of 
the conductivity of two-dimensional electron gas in 
a strong magnetic fields [4,5]. It was almost 
immediately shown that the charge carriers in 
graphene have high mobility, which makes it a 
promising material for use in a variety of 
applications, such as a future basis for 
nanoelectronics and possible substitution of silicon 
in integrated circuits [6]. 

In accordance with the aforesaid it is of great 
interest to study the electrodynamic properties of 
hyperbolic metamaterial media, which consist of 
periodically layered structures of graphene and 
dielectric. In order to adequately simulate the 
optical properties of graphene media with FDTD 
the general expression for its surface conductivity is 
impractical. On the other hand, the Drude-Lorentz 

model conductivity provides an easy-to-use 
expression that is routinely handled in FDTD 
simulations of optical phenomena in media of 
diverse physical nature. In this paper an idea is put 
forward to approximate the surface conductivity of 
graphene by its expansion in the Drude-Lorentz 
model conductivities with different internal 
parameters. 

 
2 Conductivity of graphene  

 
In order to consider multilayered hyperbolic 

metamaterial media based on graphene-dielectric 
sandwich structure, it is important to understand the 
behavior of electromagnetic waves at the interface 
between the graphene and the dielectric. Since the 
graphene is a two-dimensional conductive medium, 
its material  equations in the Fourier space take the 
following form: 
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Here   denotes the fine structure constant that 
takes an odd multiple number of   for nontrivial 
topological materials and zero otherwise.  

The boundary conditions for the magnetic and 
electrical components of the electromagnetic field 
can be shown at the interface between the graphene 
and the dielectric as: 
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2 2 , ,gD D q    2|| 1||H H j       (2) 
 

where gq , j  stand for the surface charge and 
electric current, respectively. 

Using the integral formula for Ohm's law, it can 
be shown that the following holds in the Fourier 
space:  

 

2 2 ||, ( ) ,g gD D q      2|| 1||H H E    
   (3) 

 
where g  is simply the surface optical 
conductivity. 

One of the main problems in the study of 
electrodynamic properties of graphene is the  
 

relative complexity of the representation of its 
surface conductivity. In most cases, the surface 
conductivity can be provided under the Kubo 
approach that takes into account both the electronic 
intraband and interband transitions. The intraband 
contribution is described by an expression similar 
to that of the Drude model, which is very 
convenient for handling in FDTD simulations. On 
the contrary the interband contribution is well 
presented by a rather complex integral. To 
overcome this difficulty, this work is aimed at 
interpolating the interband contribution by various 
methods. 

In particular, the optical conductivity of the 
graphene is written under Kubo approximation in 
the following form: 
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  (4) 

 
where   is the energy,   denotes the Planck's 
constant, e  designates the elementary charge, Bk
stands for the Boltzmann constant, c  is a 
chemical potential,   denotes  the scattering 
parameter, T  is the system temperature, 

1( ) = (1 exp(( ) / ))d c Bf k T      represents the 
Fermi-Dirac distribution. 

 
3 Drude-like approximation 

 
As a rule expression (4) is not directly applied 

in the numerical evaluations, various 
approximations are used instead to calculate the 
integral over the energy, thus, imposing some 
restrictions on the range of physical parameters  
 

involved. In order to consider the time evolution of 
the system using, for example, FDTD method 
together with boundary conditions (2) and material 
equations (1), it is necessary to interpolate and 
bring the expression for the surface conductivity to 
a more convenient form. 

In particular, it is convenient to carry out the 
interpolation of = 1 / g  , i.e. of the optical 
resistance. The main point of this is to write the 
interpolation expression for the optical conductivity 
of graphene and topological insulator, in the form 
of the Drude model-like expansion: 
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In most cases, it is enough to take four terms in (5): 
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where jj BA ,  are the real coefficients of 
interpolation sought. 

Introducing the difference between the directly 
calculated function g  and the interpolating 

function l  as 
( )= = ,
( )g l g

N
D
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

                 (7)
 

 
it is possible to rewrite it in the form 

)()(=)()(=)(  ibaNDD g  . 

The final goal is to minimize the function 
))()((= 22

1= kk
N

k
baE   , which yields the 

following set of equations for the interpolation 
coefficients: 
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 (8) 

 
Thus the function l   is obtained from the 

solution of the set of the linear algebraic equations

 
 






























































































































































































0

0

0

0
=

000
0000

000
0000

000
0000

000
0000

0000
0000

0000
0000

0000
0000

0000

6

4

2

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

7

6

5

4

3

2

1

0

14121081413121110987

12108131211109876

12108612111098765

10861110987654

10864109876543

86498765432

864287654321

1413121110981412108

13121110987121086

1211109876121086

11109876510864

1098765410864

98765438642

87654328642

76543216420

U

U

U

T
S
T
S
T
S
T
S

B
B
B
B
B
B
B
A
A
A
A
A
A
A
A

UUUUSTSTSTST
UUUTSTSTSTS

UUUUSTSTSTST
UUUTSTSTSTS

UUUUSTSTSTST
UUUTSTSTSTS

UUUUSTSTSTST
STSTSTS
TSTSTST

STSTSTS
TSTSTST

STSTSTS
TSTSTST

STSTSTS
TSTSTST













 

 
Here 

 
= =

=1 =1
= =

=1 =1

= ; = ( ( ));

= ( ( )); = | ( ) |

k N k N
h h

h h g k
k k

k N k N
h h

h g k h g k
k k

S

T U

    

     





 

 
.  (9) 

 
Figures 1 and 2 display the comparison of the 

direct numerical integration of the surface 
conductivity with the interpolation formula to find a 
very good agreement in a wide range of 
frequencies. In Fig. 3 the relative error of the 
absolute value is presented for two fixed values of 
the chemical potential. 

 

 
 

Figure 1 – The real part of the surface conductivity of 
the exact formula (4) (red curve) and the result of 

interpolation (blue). 
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Figure 2 – The imaginary part of the surface 
conductivity of the exact formula (4) (red curve) and the 

result of interpolation (blue). 
 

 
 

Figure 3. The relative interpolation error  
( 100%|/1|  gint  ): blue curve:  

150=c  [meV]; red curve: 65=c  [meV]. 
 
 
 
 
If it is needed for numerical calculations to 

dynamically change the parameters of the 
grapheme, the corresponding interpolation must be 
executed for the range of temperature and/or 
chemical potential. In this case to perform an 
interpolation over the frequency and one of the 
parameters it is necessary to interpolate the 
coefficients jj BA , . 

When the chemical potential in the function  
),( Tg   is treated fixed, the coefficients  jj BA ,  

are sought in the form of the polynomial relation: 
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Figure 4 – The relative error of the interpolation for the 
function  ),( Tg   at the fixed value of the chemical 

potential  150=c  [meV] . 
 
Figure 4 shows the relative error of the 

interpolation for the function  ),( Tg   at the 

fixed value of the chemical potential  150=c  
[meV]. 

In the case of interpolation with a fixed 
temperature in the function ),( cg  , the 

coefficients jj BA ,  are interpolated as a sum of the 
exponential functions as: 

 
0 1 2 3= exp[ ] exp[ ].j c cA r r r r   

 
Figure 5 shows the relative error of 

interpolation for the function ),( cg   at a fixed 

value of  the temperature =150T  [meV]. 
 

 
 

Figure 5 – The relative error of the interpolation  
for the function ),( cg   at the fixed value  

of the temperature =150T  [meV]. 
 

4 Conclusion  
 
Thus, in this paper the analysis has been made 

of the electrodynamic properties of the grapheme. 
In particular, the surface conductivity has been  
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studied as a function of the frequency, the chemical 
potential   and the temperature Т . The effective 
method has been developed for the interpolation of 
the surface conductivity of the graphene as a 
polynomial expansion to find a good agreement for 
the entire range of values of the chemical potential 
and the temperature. This ensures effective 
integration of Maxwell's equations by FDTD 
simulations with further applications for studying 

optical phenomena in composite materials based on 
graphene and topological insulators [7]. 
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