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In order to obtain the dynamical collision frequency and the dynamical conductivity, we used the molecular 
dynamics simulation of dense two-component plasmas with the pair interaction potential of charged particles 
taking into account quantum-mechanical effects.The temperature range of KTK 84 1010   and the density 
range of 324321 1010   cmncm were considered. It has been shown that at high temperatures the results 
for the static collision frequency arein a good agreement with the well-known models of ideal plasmas.It has 
been found that the dynamical collision frequency of electrons is nearly constant at frequencies lower than the 
electron plasma frequency and drops fast at frequencies higher than the electron plasma frequency. It is also 
shown that ina field with a frequency higher than the electron plasma frequency the dense plasma behaves 
like an insulator in terms of conductivity. 
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1 Introduction  
 
The study of the plasma state is stimulated by 

the fundamental interest in understanding its nature 
and importance of its practical use. It is well known 
that the source of energy in stars is thermonuclear 
reactions. An idea of a controlled thermonuclear 
fusion has led to the intensive research in the field 
of plasma physics. At the present time the 
laboratory plasmas are investigated in a wide range 
of temperatures and pressures, from a low-
temperature gas-discharge plasma up to the dense 
plasma obtained by the laser beam [1], [2]. Some of 

the reasons for a great interest in the investigation 
of the dense plasma properties are discussed in  
[3-5]. 

This work is devoted to the study of the 
dynamical collision frequency of electrons in two-
component dense plasmas. For the considered 
plasma parameters the thermal wavelength of 
electrons becomes comparable with the mean inter-
particle distance. In a molecular dynamics 
simulationwe used the following quantum potential 
correctly taking into account the quantum 
diffraction effect in dense plasmas [6]: 
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where / 4ab ab Bm k T   is the thermal 
wavelength, mab = mamb / (ma = mb), a = (3/4πn)1/3 
is the average inter-particle distance and b = 0.033. 

In the limit T the potential (1) coincides 
with the Deutsch potential [7]: 
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Figures 1-2 show  the quantum potentials (1) 
and (2), where 2 /e a  (here the density 
parameter Sr , which is the ratio of the mean inter-
particle distance to the first Bohr radius,is 
introduced). As it is seen the quantum potential (1) 
gives weaker interaction than the potential (2). 
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Figure 1 – Proton-electron pair interaction potential. 

Curve 1 is the Deutsch  potential (11), curve 2 is 
thesemiclassical potential (10), curve 3 is the Coulomb 

potential, where 0/ arR  , 2 , 1Sr  
 

 
Figure 2 – Proton-electron pair interaction potential. 

Curve   1 is the  Deutsch  potential (11), curve 2 is the 
semiclassical potential (10),  curve 3 is the Coulomb 

potential, where 0/ arR  , 2 , 3Sr  
 
 
The potential (1) can be used for plasma at low 

temperature  410T K  if its density is sufficiently 
high and plasma is fully ionized due to the Mott 
transition.  

 
2 The dynamical collision frequency and the 
dynamical conductivity 

 
As it is well known, the characteristic collective 

oscillation frequency in the plasma is defined by 
the plasma frequency: 
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In the plasma, an incident beam experiences 

strong dispersion near the plasma frequency P .  

A full induced electric field D


is related to the 
field intensity E


according to the following 

formula: 
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where the dielectric tensor (DT) depends on the 
frequency   and the wave vector k : 
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(5) 
The dependence of the  ,ij k  on the wave 

vector corresponds to the correlation of the field 
values in space. In plasmas, the radius of the 
volume, around the given point, within which the 
field value at thegiven point strongly correlates 
with that in the other points is defined by the 
screening length. As the screening length in the 
classical plasma,one should takeeither the Debye 

radius 24 /D Br ne k T (Tomas-Fermi screening 
length in degenerate plasmas) or the mean free 
path, depending on which of them is smaller. In 
dense plasmas the mean inter-particle distance 

 1/33 / 4a n can be taken as the characteristic 
screening length. 

The DT can be expressed in terms of the 
conductivity tensor:  
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 ,ij k  can be also divided into longitudinal 

and transversal parts:  
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The longitudinal part is related to the density 
oscillations. The imaginary part of the ),( kl   
describes the energy dissipation and the real part of 
the ),( kl   describes density fluctuations. 
Moreover, within the linear response theory the 
longitudinal part of the DT is the response function 
and determines all electrodynamic properties of the 
plasma. Therefore, further the longitudinal part of 
the DT is considered. For the purposes of 
convenience the longitudinal part of the DT is 
denoted as simply ),( k  and referred to as the 
dielectric permeability (DP).   

In practice, an incident radiation has the 
wavelength much greater than the screening length. 
Therefore, we did not consider the spatial 
dispersion of the ),( k [8], we only studied its 
dependence on frequency. 

The DP and the dynamic conductivity can be 
obtained using the well-known Drude-Lorentz 
formulas: 
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where the dynamical collision frequency ( )    
was introduced.  

From the Drude-Lorentz formula it is seen that 
electrodynamic properties can be investigated either 
directly by obtaining a dynamic DP or alternatively 
through the dynamical collision frequency ( )  . 

According to the Green-Kubo theory the 
dynamic DP can be obtained if the generalized 
susceptibility )(  is known [9,10]: 
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where the susceptibility expressed in terms of the 
velocity autocorrelation function  )()0( t  of 
electrons: 
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From equations (8) and (10) the dynamical 
collisions frequency can be expressed in terms of 
the generalized susceptibility: 
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3 Results  

 
Figure 3 shows the dynamic collision frequency 

obtained from the molecular dynamics simulation 
for the given density parameter and different 
coupling parameters.The star marks the static 
collision frequency obtained using the analytical 
formula for the weakly coupled plasma ( 1 )[8]. 
This analytical formula was derived using the 
scattering cross section for the particles interacting 
via the Debye potential: 
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where  is the most probable velocity of particles. 

As it is seen from Fig.3 the dynamical collision 
frequency tends to the static limit and roughly remains 
the same at frequencies smaller than the plasma 
frequency. On the contrary, at frequencies higher than 
the plasma frequency the collision frequency drops 
sharply. This is due to the fact that the electron cannot 
experience many collisions during the time shorter that 
the time required for passing the mean free path, which 
is characterized by the inverse value of the plasma 
frequency. It is also seen that the collision frequency 
decreases with increasing temperature. This behavior is 
in agreement with the well-known model of a 
collisionless plasma, which is applicable at high 
temperatures 1  . 

Figure 4 shows the dynamical collision frequency 
for different densities at a given temperature. An 
increase in density causes an increase in the dynamical 
collision frequency, which is caused bythe decrease in 
the mean free path of particles.   

In Fig.5 the dynamical conductivity obtained from 
a molecular dynamics simulation is presented in 
comparison with its static value and the value obtained 
from the Spitzer theory. Figure 6 shows the dynamical 
conductivity for different densities at a constant 
temperature. An increase in density causes an increase 
in the dynamical conductivity, which is obviously due 
to the increase in the number of  charged particles.   
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Figure 3 – The dynamical collision frequency 
at different temperatures 

Figure 4 – The dynamical collision 
frequency at different densities 

Figure 5 – The dynamical conductivity 

Figure 6 – The dynamical conductivityat 
different densities 

4 Conclusion 

The results obtained in this work indicate that 
the collision frequency does not change strongly in 
the range of frequencies lower than the plasma 
frequency and rapidly goes down with increasing 
frequency for P  . It was also shown that in a 
high frequency field P   the dense plasmas 
behave like insulators in terms ofelectrical 
conductivity. This fact is understandable if one 

bears in mind that conductivity in the plasmais the 
result of drift of electrons and ions and the 
alternating field with a high frequency may displace 
particles at large distancesdue to their inertness. 
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