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We consider the propagation of X-ray and gamma ray emissions in strong magnetic and gravitational fields of the 
pulsar in nonlinear vacuum electrodynamics. We show that the radiation has birefrigence. We have calculated the 
delay between the two modes, as they propagate from the pulsar to the detecting device. gamma ray astrophysics, 
pulsar, magnetar, quantum electrodynamics, gravity. We estimate the numerical value of the delay in the case 
where the magnetic field source is a neutron star with field on a surface B~1016 G (magnetar). Due to the our 
condition, which must be satisfied for all points of considered beams, our calculation will be applicable only to 
the beams, for which the pericenter rp exceeds ten radii of the neutron star 
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1 Introduction  

 
The field equations in nonlinear post-Maxwell 

electrodynamics, which is a direct consequence of 
quantum electrodynamics [1] have the form:  

 
 1 { } = 4 ,g x gQ cj          (1)  
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where jβ is the current density four-vector, g – 
determinant of the metric tensor, 2= 1/ ,qB  
I2= Fβσ Fβσ– invariant of the electromagnetic 
tensorFβσ and according to quantum electrodynamics 
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The second pair of equations of electrodynamics 
coincides with the corresponding equations of 
Maxwell’s theory:  

 
 = 0.F x F x F x  

             (2)  
 
Metric tensor in equations (1) satisfy Einstein 

equations [2]:  

 
412 = 8 ,R g R Gc T          (3)  

where =R R
   – Ricci tensor, Tβσ– 

energy-momentum tensor of the matter and all fields, 
including electromagnetic. The system of equations 
(1) – (3) in our problem will be sought by the method 
of successive approximations with a precision linear 
in the small dimensionless parameters: the 
gravitational potential and post-Maxwell 
amendments. The gravitational field of the pulsar 
will be assumed to be spherically symmetric, and in 
the harmonic Fock coordinates [2] metric will be 
expanded in the small parameter α/r with the required 
accuracy:  
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(4)  

 
where 2= / ,M c    – gravitational constant, and 
M– mass of the pulsar. 

Suppose that at time t = 0 from the point r = r0 of 
the pulsar magnetosphere hard radiation impulse was 
emitted. Then, in magnetic field of the pulsar that 
impulse, because of birefringence, will split [3] into 
two impulses with orthogonal polarizations and 
moving at different speeds. 

For the convenience of further calculations, we 
introduce the spherical coordinate system as follows. 
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Consider a beam of the first normal mode and draw a 
tangent to it at the point r = r0. Axis of the spherical 
coordinate system will be directed in such a way, so 
that the tangent to the chosen beam and the center of 
the pulsar would be lying in the same plane, and 

= / 2,   and the azimuthal coordinate   of the 
source of hard radiation would be equal to = 0.  

As it is accepted [4] in the problems of celestial 
mechanics, instead of the radial coordinate r we 
introduce the coordinate = 1/ .u r  Then, the 
non-zero components of the dipole electromagnetic 
field tensor of the pulsar m, in the coordinate system 

, ,u   , with the required for our purposes accuracy 
will be:

 
 0 0= =| | sin sin( ),u uF F m       
 

  0 0 0= =| | sin [sin cos cos( ) sin cos ],u uF F m                             (5)  
 
 0 0 0= = 2 | | sin [sin sin cos( ) cos cos ].F F m u            
 
 
According to [3,5] the propagation of 

electromagnetic waves in external electromagnetic 
and gravitational fields in nonlinear electrodynamics 
with field equations (1) – (3) is equivalent to the 
propagation of the normal modes through the 
isotropic geodesics in effective space-time for which 
metric tensor (1,2)effG  has the form:  

 
(1,2)

(1,2)= 4 .effG g F g F
          (6)  

 
Therefore the study of the laws of propagation of 

electromagnetic impulses in magnetic (5) and 
gravitational (4) fields of a pulsar is conveniently 
carried out not by using equations (1) – (2), but based 
on the analysis of isotropic geodesics in space-time 
with the metric tensor (6). 

Equations for isotropic geodesics in the effective 
space-time with the metric tensor (6) will be written 
in the form where differentiation is performed not 
with respect to the affine parameter ,  but with 
respect to the azimuthal angle : 

 
2 0 2 0 0 3{ } = 0,d x d dx d dx d dx d 

         
 

2 2 1 3{ } = 0,d ud dud dx d dx d 
         

 
2 2 2 3{ } = 0,(7)d d d d dx d dx d 

           
 
where 

  – Christoffel symbols defined in 
effective space-time with the metric tensor (6). 

 

The system of equations (7) has a first integral:  
 

(1,2) = 0.G dx d dx d 
             (8)  

 
Equations (7) and (8) are non-linear, but in our 

case there are small parameters u  and 
2 6

1,2 .m u  Therefore, the solution of these 
equations will be sought by the method of successive 
approximations in these small parameters. 

 
2 Solution of the equations for beams  

 
In the zeroth approximation in small parameters 

the beam under mentioned boundary conditions, will 
be a straight line in the plane θ = π/2 passing through 
the point u = u0, = 0  and take a value u = up at 
pericenter. 

Solving this system of equations, we arrive at the 
relations:  
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where   is defined from: 0sin = / .pu u  

We search the solution of the system of equations 
(7)-(8) for the first normal wave in the ordinary form 
for equations of that type:  

 
2 2 7

1 1 2( ) = sin( ) ( ) ( ),p p pu u u m u          
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2 6
3 1 4( ) = 2 ( ) ( ),p pu m u           
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where ( ), = 1 6a a   are unknown functions of 
the azimuthal angle ,  having zero order of 
smallness. 

Using an expression (10), we search the solution 
of the system of equations (7)-(8) for the first normal 
wave: 
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where we use the notation:  
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Solving the equations for functions 5( )  and 

6 ( ) , we have:  
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where  
 

6 2
6 0

7 5
0
3

5 3

2
0

2

( ) = {16sin 2( ) ( )[4 9 ( )]sin sin
– cos 2( )[{144 ( ) 8 ( )sin sin

26 ( ) 39sin( )}cos( )sin
–39 ] 4[8 ( ) 6 ( )sin sin
9sin( )]cos( ) 36 }sin
8[3 2 ( )]sin 2( )sin

f       
     

     
    
     

   

    

    

     

    

    

     48 .

 

 
For the constants we have 
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5 6 6= 2 1 cos sin , = (0).A ln A f      (13) 

 
The beam of the first normal mode after exiting 

the vicinity of the pulsar has to be detected by 
measuring device located in Earth orbit. Since the 
nearest pulsars locate [6] at considerable distance  
( 10r  kps >> nR ) from the Earth, it is possible to 
assume that in the chosen coordinate system our 
measuring device has the coordinate 

1 1= 1/ << .pu r u  This condition allows everyone to 

simply define the required angular coordinates 1  
and θ1 of the device with an aim to register the beam 
of the first normal mode. We assume 

1 1= ,      where 1 << 2 .   

Substituting this value of 1  in the equation 

1 1( ) = ,u u  and deriving it up to the first order with 

respect to 1 , we will have:  
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This implies that the gravitational field bends the 

beams only in one plane. 
For the beam on which the pulse propagates 

carried by the second normal mode, the expressions 
(10) take the form:  
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with the same functions ( )a  , which were used 
for the first normal mode. 

Integration constants for beam of the second 
normal mode are defined from boundary conditions: 
at = 0  andt = 0 the beam should begin at the point 
u=u0, θ=π/2 and asymptotically go to spatial infinity 
(r→∞, u→0) Therefore, the integration constants C1, 
C2, C3, C4, A5 and A6 will be defined by equations 
(11), (12)-(13). 

For the aim of finding values of the integration 
constants S1, S2, S3 and S4, we should define the angle 

2= ,   at which u=u1. Substituting 

2 2= =       in the first equation of (14), and 
equating it tou1,we obtain:  
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One can use now 2 2= =       in the 
second equation of (7). It is simple to show that  
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Since at spatial infinity both beams have to get to 

the measuring device, the conditions which must be 
satisfied are the next: 1 2 1 2= , = .     Then we 
obtain:  

1 3= 2cos (1 sin ), = 0,S S    
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Thus, all integration constants for beam of the 

second mode are defined. 
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3 Conclusion 
 
The last paragraph we define a time interval 

1 2= ,advT t t  which one normal mode ahead of 
another mode in the propagation of an 
electromagnetic pulse from the source to the 
measurement device:  

2 5 2
1 ) 0 0

8 6 7
0

5 3

5 3

3

= ( 64 { [16sin 2(sin
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(15)

 
 

We estimate the numerical value of advT  in the 
case where the magnetic field source is a neutron star 
with field on a surfaceB~1016 G (magnetar [7]). Due 
to the condition 2 6/ <<1,m r  which must be 
satisfied for all points of considered beams, our 
calculation will be applicable only to the beams, for 
which the pericenterrp exceeds ten radii of the 
neutron star. In this spatial regionB(r)<1013 G and 

2 6/ 0.05m r  . Taking into account that the radius 
of a typical magnetar is 10 km, from the expression 
(15) we obtain in order of magnitude the value: 

810advT   sec.

 
References 

 
[1] E.M. Berestetskiy, E.M. Lifshitz. and L.P. 

Pitayevskiy. Quantum Electrodynamics. – M: Nauka, 1980. 
[2] V.A. Fock. Theory of Space, Time and 

Gravitation. – Oxford: Pergamon Press, 1961. 
[3] V.I. Denisov, I.P. Denisova. The eikonal 

equation in parameterized nonlinear electrodynamics of 
vacuum // Doklady Physics. – 2001. – Vol. 46. – P. 377. 

[4] S. Chandrasekhar. The mathematical theory of 
black hole. – Oxford: Oxford University Press, 1983. 

[5] P.A. Vshivtseva, M.M. Denisov. Mathematical 
Modelling of electromagnetic wave propagation in 

nonlinear electrodynamics // Compututional Mathematics 
and Mathematical Physics. – 2009. – Vol. 49. – P. 2092. 

[6] V.M. Kaspi, J.R. Lackey, J. Mattox, R.N. 
Manchester, M. Bailes. and R. Pace. High-energy 
gamma-ray observations of two young, energetic radio 
pulsars // Astrophysical Journal. – 2000. – Vol. 528  
– P. 445. 

[7] A. Colaiuda, V. Ferrari, L. Gualtieri1. and J.A. 
Pons. Relativistic models of magnetars: structure and 
deformations // Mon. Not. R. Astron. Soc. – 2008.  
– Vol. 385. – P. 2080.

 
 
 


