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We make theoretical analysis of bound and resonance states of 8Li and 8B nuclei. The analysis is carried out within a 
three-cluster microscopic model which account for polarizability of interacting clusters. Main attention is paid to the 
nature of resonances states embedded in two-cluster continuum. We also study effects of the cluster polarization on the 
spectrum of bound and resonance states, and on the elastic and inelastic n +  7Li and p+ 7Be scattering. 
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1 Introduction 

Analysis of the astrophysical data on the 
abundance of light atomic nuclei in the Universe 
stimulated new and more detail experimental and 
theoretical investigations of reactions induced by 
interaction of light nuclei. For the astrophysical 
applications one has to know the cross section of a 
reaction at the low energy region, which amounts 
several kiloelectron volts in the entrance channel of 
the reaction. This region of energy can be easily 
achieved at experimental facilities for the reactions 
induced by interaction of neutrons with light nuclei. 
However, it is not the case for interaction of light 
nuclei, containing one or more protons. Coulomb 
interaction between nuclei makes very difficult to 
measure the cross section. In this case theoretical 
methods are invaluable tool to determine or to 
evaluate the cross section of importance. 

As many of light nuclei are weakly bound, they 
could easy change their size or shape while 
interacting with neutrons, protons or other light 
nuclei. This phenomenon is called the polarization. A 
microscopic three-cluster model was formulated in 
Ref. [1] to take into account polarizability of the 
interacting clusters. We refer to it as "cluster 
polarization". It was shown in Refs [1 – 4] that 
cluster polarization plays an important role in 
formation of bound and resonance states in seven 
nucleon systems. It was also shown that cluster 
polarization has large impact on different types of 
reactions in 7Li and 7Be nuclei. Within the present 
paper, the effects of cluster polarization will be 
studied in light mirror nuclei 8Li and 8B, and 

interaction of neutron with 7Li and proton with 7Be. 
Both 7Li and 7Be nuclei have well established 
two-cluster structure: 4He + 3H and 4He + 3He, 
respectively. This fact is taken into account in the 
present model. We are also going to consider bound 
and resonance states of the mirror nuclei 8Li and 8B 
within three-cluster microscopic model. We study 
resonance states created by two-cluster and 
three-cluster configurations. 

Properties of mirror nuclei 8Li and 8B have been 
intensively investigated in microscopic and 
semimicroscopic models. Besides different 
experimental methods were used to determine 
structure of 8Li and 8B and nuclear reactions in these 
nuclei. In particular, new resonance states of 8B have 
been recently discovered in [5, 6] in elastic 7Be + p 
scattering. 

The novelty of our approach is that it allows us to 
consider cluster polarizations. It means that within 
the proposed model, size and shape of clusters are not 
fixed but depend on distance between interacting 
clusters. In the present case we consider how size of 
7Li (7Be) is changed when neutron (proton) moves 
toward 7Li(7Be). 

2 Method and model space 

We shall consider 8Li as a three-cluster 
configuration 8Li = α + t + n and nucleus 8B we shall 
represent as the configuration 8B = α + 7He + p. 
These configurations are dynamically distinguished 
from other three-cluster configurations as they have 
minimal threshold energy compared to other 
three-cluster configurations in 8Li and 8B. By using 
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such three-cluster configurations we can take into 
account the following set of two-cluster channels: 7Li 
+ n, 5He + 3He, 4He + 4He in 8Li and 7Be + p, 5Li + 
3He, 4Li + 4He in 8B. Moreover, with such 
three-cluster configurations, we can consider nuclei 
7Li, 5He, 4H, 7Be, 5Li, 4Li as two-cluster systems: 7Li = 
α + t, 5He = α + n, 4He = t + n, 7Be = α + 3He, 5Li = α 
+ p, 4Li = 3He + p and provide more advanced 
description of internal structure of these nuclei. 

To describe selected three-cluster configurations 
we employ Algebraic Model with Gaussian and 
Oscillator Basis (AMGOB) [1 – 4]. We start with 
construction of wave functions for two-cluster 
subsystems and for compound three-cluster system. 
Two-cluster wave function  

J



 , describing 

interaction of clusters with indexes β and γ, can be 
written as
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Indexes α, β and γ form cyclic permutations of 1, 

2 and 3. 
Wave function of discrete and continuous 

spectrum states of three-cluster system is 
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where Фα(Аα, sα) is a many-particle shell-model wave 
function describing the internal motion of cluster α (α 
= 1, 2, 3), consisted of Аα nucleons (1 4A  ), and 
sα denotes spin of the cluster. 

Similarly to the case of three particles, we use 
three Faddeev amplitudes    ,

, ,E J
l Lf x y   

 and three 
sets of the Jacobi coordinates xα and yα. The Jacobi 
coordinates determine relative position of the center 
of mass of three clusters. In our notations, xα is the 
Jacobi vector, proportional to the distance between β  
and γ clusters, while yα is a Jacobi vector connecting 
the   cluster to the center of mass of the β and γ 
clusters. Vectors x

  and y
  denotes unit vectors 

x
 = /x x   and = / .y y y  

  Antisymmetri-

zation operators A


 and A  make antisymmetric 

wave functions of two- and three-cluster systems, 
respectively. Note that shell-model wave functions 

 ,A s    are antisymmetric, thus operator A


 

and 

  permute nucleons from different clusters. 

Note that the shell-model wave function Фα(Аα, 
sβ) explicitly depends on oscillator length b. In 
different realizations of the many-cluster model this 
parameter is used as a variational or adjustable 
parameter. As a rule oscillator length is adjusted to 
minimize bound state energy of clusters or to 
reproduce their size (i.e. mass or proton 
root-mean-square (rms) radius). Within all our 
models we use common oscillator length for all 
clusters involved in calculations. 

The Faddeev amplitudes    ,
, ,E J

l Lf x y   
 in eq. 

(2) is marked by two partial orbital momenta α and 
lα. They are associated with the Jacobi vectors xα and 
yα, respectively. In what follows we assumethat α is 
the orbital momentum of two-cluster subsystem and 
lα is the orbital momentum connected with rotation of 
a third cluster around center of mass of two-cluster 
subsystem. 

To solve correctly the three-cluster problems, we 
need to solve two-cluster Schrödinger equation for 
three different two-cluster partitions α (α = 1, 2, 3). 
Energy of two-cluster bound states  determine the 
threshold energy of two-body channels and wave 
functions determine an asymptotic form of 
three-body functions in the part of coordinate space 
which Faddeev and Merkuriev denoted as   (see 
pages 134-135 of book [7]), i.e. in the region where 
distance xα between selected pairs of clusters is much 
smaller that distance between other pairs of clusters  
( x x  , x x  ). Having solved the 
Schrödinger equationsfor all two-cluster subsystems, 
we can proceed with solving the Schrödinger 
equation for three-cluster system (see eq. (31) and 
(33) in Ref. [1]). It is well know [8] that the 
Schrödinger equations for two- and three-cluster 
systems can be reduced to two- and three-body 
equations, respectively, with nonlocal and 
energy-dependent potentials. The later needs special 
attention and has to taken into account. The most 
simple way of overcoming this problem is to use a 
square-integrable basis. 
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The essence of the model, employed in the 
present investigations, is to use a discretization 
scheme with the help of square-integrable basis. It 
allows us to reduce the Schrödinger equation for 
many-channel system to the set of algebraic 
equations, which can be easily solved numerically. In 
present model we use of the Gaussian basis to 
describe bound and pseudo-bound states of 
two-cluster subsystems, and we employ the 
Oscillator basis to study interaction of the third 
cluster with two-cluster subsystem. The explicit 
definition of the Gauss and oscillator basis functions, 
deducing of set of linear equations for wave function 
and boundary conditions for wave function are 
presented in Refs. [1, 2]. 

 
3 Results 
 
We use two nucleon-nucleon potentials: the 

Minnesota potential (central components are taken 
from [9, 10]) and the Modified Hasegawa-Nagata 
potential (MHNP) [11, 12].Oscillator length b,  
 

which is common for all clusters, is adopted to 
minimize the threshold energy of the three-cluster 
channel. In this way we optimize description of the 
internal structure of all clusters. For 8Li (8B) and the 
MP it equals b =1.451 fm and for MHNPit equals b 
= 1.362 fm. In present calculations, we use the 
Majorana parameter m  of the MHNP [11, 12] and 
parameter u of the MP [9] as adjustable parameters. 
These parameters are slightly changed to reproduce 
the bound state energy of 8B.This is done in order to 
be consistent with the experimental situation in 8Li 
and 8B nuclei. In Table 1 we show spectrum of the 
8Li and 8B bound states, which is obtained with 
"optimal" input parameters. Experimental data are 
from Ref. [13]. Energy of bound states in 8Li and 8B 
is reckoned from the two-cluster threshold 7Li + n 
and 8Be + n, respectively. One can see that the 
MHNP provides more correct description of the 
bound state spectrum in 8Li. Meanwhile, the optimal 
input parameters of the MP leads to too very close 
position of the ground 2+ state and the first excited 
1+ state. 

 
Table 1 – Optimal input parameters and spectrum of bound states in 8Li and 8B. Energy of the bound states is determined from the 7Li + 
n and 8Be + p thresholds in 8Li and 8B, respectively 

 
Nucleus 8Li  8В 

Potential MP MHNP Exp. MP MHNP Exp. 

b, fm 1.3451 1.3620 1.3451 1.3620 
m (u) 0.9600 0.4157 0.9600 0.4157 

Jπ Е, MeV Е, MeV Е, MeV Е, MeV Е, MeV Е, MeV
2+ -1.958 -1.908 -2.032 -0.1368 -0.1393 -0.1375
1+ -1.607 -0.977 -1.051  

 
 
To achieve convergence of energy of the 8Li and 

8B bound states as a function of number of the 
Gaussian and oscillator functions, we investigated in 
detail how energy of bound and resonance states 
depends on number of basis functions. We found that 
4 Gaussian functions and 50 oscillator functions 
provide an acceptable precision of microscopic 
calculations of energy and other parameters of the 
bounds states, such as, for instance, the 
root-mean-square proton, neutron and mass radii. It 
is also established that, 4 Gaussian functions and 130 
oscillator functions guarantee a necessary precision 
of the scattering matrix and energy and width of 
resonance states calculations. 

In Table 2 we display the proton, neutron and 
mass rms radii of the ground state in 8Li and 8B 
nuclei. Experimental data are taken from Ref. [14]. 
Theoretical results are in a good agreement with the 
experimental data. One can see that our results 
confirm the existence of the neutron halo in 8Li and 
the proton halo in 8B, as neutron (proton) rms radius 
is larger than the proton (neutron) rms radius in 8Li 
(8B).This is confirmed by the last column of the 
Table, where the difference between proton and 
neutron rms radii is displayed. Our results are also in 
a good agreement with the results, obtained in similar 
microscopic models [15], [16].
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Table 2 – Proton (Rp), neutron (Rn) and mass (Rm) rms radii (in fm) of the ground state in 8Li and 8B. Energy of the ground state is in 
MeV 

 

 NNP E  pR  nR  mR  p nR R  

8 Li  

MP -2.001 2.174 2.516 2.394 0.342 

MHNP -1.908 2.174 2.548 2.415 0.374 
Exp.  2.266(0.02) 2.446(0.02) 2.376(0.02)  

8 B  

MP -0.137 2.724 2.217 2.546 0.507 
MHNP -0.139 2.756 2.244 2.576 0.512 

Exp.  2.496(0.03) 2.336(0.03) 2.436(0.03)  
 
 
Let us now tern our attention to the resonance 

states. Resonance states in 8Li and 8B, generated by 
interaction of neutron with 7Li and proton with 8Be 
respectively, are demonstrated in Table 3. 
Experimental parameters of resonance states are 
taken from Ref. [13]. As one can see energy and 
width of resonance states strongly depends on shape 
of resonance states. For instance, energy of the first 
3+ resonance state in 8Li obtained with the MHNP 

potential is 12 times larger than the one calculated 
with the MP, and width is almost 50 times large than 
the width calculated with the MP. There is one 
exception, when parameters of resonance state, 
calculated with both potentials are very close to each 
other. This is the 3+ resonance state in 8B. In this case 
energy and width of the resonance state do not differ 
so dramatically as for other resonance states.

 
 

Table 3 – Spectrum of resonance states in 8Li and 8B. Energy of resonances is given in MeV (Theory) or in MeV  keV (Experiment). 
Theoretical and experimental width of resonance states is indicated in keV 

 
8Li  8В 

Jπ  MP MHNP Exp Jπ MP MHNP Exp

3+ Е  0.049 0.610 0.223 3 3+ Е 2.480 2.560 2.183 20
Г 3 166 33 6  Г 495 572 350  30

1+ Е  1.535 1.002 1.178 1+ Е 0.090 0.615 0.632 2.5
Г  826 1433  1000  Г 0.4 43.7 35.6 0.6

1+ Е  4.619 2.129 3.368 1– Е 1.441 1.132 
Г  22 913  650  Г 989 1828  

3+ Е  2.458 3.625 0+ Е 1.644 1.128 
Г  2636 760 Г 870 299 

4+ Е  4.486 3.190 4.498 20 2– Е 4.209 3.363 3.363 500
Г  64 2 35  15  Г 632 4143 8000 4000

 
 
Comparing theoretical and experimental 

parameters of resonance states, we come to the 
conclusion that the MHNP provides more precise 
description of resonance states in 8Li and 8B than 
the MP. One can see from Table 3, the energy and 
with of the 1+ and 2– resonance states in 8B and the 
1+ resonance state in 8Li, calculated with the 
MHNP, are close to experimental values. 
However, the MP providesfairly good description 
of parameters of 4+ resonance statein 8Li and 3+ 
resonance state in 8B. 

The above mentioned results are obtained with 
taking into account the cluster polarization. To see 
explicitly the effects of cluster polarization, the 
polarizability of clusters is switched off. We 
demonstrate effects of the cluster polarization only 
for two bound states and two resonance states, 
determined with the MHNP. By switching off the 
cluster polarization in 8Li, we obtain energy of the 
bound states  2E  =-1.25 MeV and  1E 
=-0.54 MeV, which should be compared with 
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 2E  =-2.00 MeV and  1E  =-1.31 MeV. As we 
see, the cluster polarization decreases significantly 
energy of the bound states in 8Li. Let us turn our 
attention to the resonance states. Note, that most part 
of resonance states in 8Li (8B), displayed in Table 3, 
are determined in the 7Li + n (8Be + p) elastic 
scattering. Consider the 1+ resonance state in 8B. By 
neglecting the cluster polarization we obtain 
parameters of the resonance state: E = 0.94 MeV and 
Г = 163 keV. Comparing these parameters with the 
corresponding results in Table 3, we came to the 
conclusion that cluster polarization decreases 1.5 

times energy and almost 4 times the total width of the 
1+ resonance state. More stronger effects of the 
cluster polarization is observed in the 3+ resonance 
state in 8Li. Energy of the resonance state is 
decreased from 2.438 MeV to 0.61 MeV and width is 
reduced from 1227 keV to 166 keV due to the cluster 
polarization. 

Figures 1, 2 visualize effects of cluster 
polarization in 8Li and 8В. These results are obtained 
with the MHNP. In Figure 2, the orbital momentum l1 
denotes the orbital momentum of neutron with 
respect to 7Li nucleus.  

 

  
 

Figure 1 – Spectrum of two bound states and  
one resonance state in 8Li obtained withou (N) and  

with (Y) cluster polarization 

Figure 2 – Phase shifts of n + 7Li scattering  
with the total angular momentum 

 = 3J   . 
 
 

One can see, that cluster polarization influences 
significantly on the phase shift of n + 7Li scattering 
with the orbital momentum of neutron l1 = 1. 
However, effects of cluster polarization on n + 7Li  
scattering with l1 = 3 is very small. 

There is other way for visualization of cluster 
polarization. As was suggested in [1], by using 
wave function of a bound state of compound 
system, we can calculate how the average distance 
between two selected clusters depends on distance 
to the third cluster. For instance, we can calculate 
average distance between alpha particle and triton 
(3He) when neutron (proton) is moving toward to 
7Li (7Be).This quantity is displayed in Figure 3 for 
the ground 2+ and first excited 1+ states in 8Li. 
When neutron is far away from 7Li, the average 
distance between alpha particle and triton is 
approximately 4.5 fm. When neutron approach to 
7Li, theaverage distance is reduced slightly, and 
then it significantly stretched when the distance 
R(n – 7Li) is at range between 1.5 and 9 fm. 
Seems, at this range nucleus 7Li changes it 

orientation with respect to neutron which results 
in such tremendous size of the system α + t. And 
finally, when neutron is very close to the center of 
mass of 7Li it compressed to minimal size of 1.6 
fm. Thus, this figure demonstrates that 7Li as a 
two-cluster system is strongly affected byincident 
neutron. Some what different picture is observed 
for the ground state of 8B. Effects of incident 
proton on distance between alpha particle and 3He 
is demonstrated in Figure 4. The incident proton 
gradually decreases size of 7Be, which is due to a 
combination of nuclear forces and Coulomb 
interaction. The "phase transition", observed in 
bound states of 8Li in a wide range of distance R(n 
– 7Li), now takes place in a very small range of 
R(p – 7Li) distance. However, an amplitude ofthe 
"phase transition" in 8B is much more than in 8Li. 
It should be notes that without polarization, all 
curves in Figuresand are transformed into plain 
lines, i.e. radius of two-cluster subsystem is 
independent on position of third cluster when 
polarization is neglected. 
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Figure 3 – Average distance between α particle and triton 
as a function of distance between neutron and 7Li. 

Calculation is made with the MHNP 

Figure 4 – Dependence of average distance between  
alpha particle and 3He on distance to proton. Results are 

obtained with the MHNP 

We have applied a three-cluster microscopic 
model for studying structure of bound states and 
reactions in 8Li and 8B. The model took into account 
polarizability of interacting clusters. It was 
demonstrated that the cluster polarization has large 
impact on properties of bound and resonance states 
and on the elastic scattering of neutron on 7Li and 
proton on 7Be. The present model provides fairly 

good description of the bound and resonance states in 
mirror nuclei 8Li and 8B.  
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