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We study nature of the low-lying resonance states in mirror nuclei 9Be and 9B. Investigations are performed 
within a three-cluster model. The model make uses of the hyperspherical harmonics, which provide convenient 
description of three-cluster continuum. Much attention is paid to the controversial 1/2+ resonance states in both 
nuclei. We study effects of Coulomb interaction on energy and width of three-cluster resonances in the mirror 
nuclei 9Be and 9B. We look for the Hoyle-analogue states which allows for alternative way of 9Be and 9B synthesis 
in a triple collision of clusters. 
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1 Introduction 
 
Resonance state is one of the challenging 

problems for theoretical and nuclear physics. There 
are common features of resonance states, observed in 
a few- or many-channel systems.However, there are 
some specific features connected with the way of 
excitation or generation of resonance statesand also 
in different way of resonance state decay in nuclear 
systems. Special attention is attracted by resonance 
states formed by three interacting clusters, i.e. 
resonance states embedded in three-cluster 
continuum. Such resonance states are repeatedly 
observed in nuclei with well-determined 
three-cluster structure. These nuclei have dominant 
three-cluster configuration, it means that bound 
states and many resonance states are lying bellow 
and above, respectively, threshold of three-cluster 
continuum. In other words, bound states and large 
part of resonance states in three-cluster nuclei are 
generated by an interaction of three clusters. 
Asexamples of such nuclei, we can mention 5Н, 6Нe 
and 6Be, 9Be and 9 B  and many others. 

In present paper, a microscopic three-cluster 
model is applied to study nature of resonance states 

in 9Be and 9B. Dominant three-cluster configurations 
α + α + n and α + α + p, respectively, are selected to 
describe the low excitation energy region in these 
nuclei. Microscopic model, which was formulated in 
[1], make uses of total basis of oscillator functions to 
describe intercluster motion. The model is called as 
AM HHB which stands for the Algebraic 
three-cluster Model with the Hyperspherical 
Harmonics Basis.The first application of this model 
to study resonance structure of 9Be and 9B was made 
in Ref. [2]. Results presented in [2] were obtained 
with the Minnesota potential.In present paper we 
make use of the modified Hasegawa-Nagata 
potential, and we pay much more attention to the 1/2+ 
resonance states, the Coulomb effects on resonance 
states in mirror nuclei. Besides, we look for the 
Hoyle analogue states in 9Be and 9B. 

 
2 Model formulation 
 
In this section we shortly outline main ideas of 

the model. We start with a wave function of nucleus 
consisting of three clusters, as this a key element of 
model formulation. To describe three-cluster system 
one has to construct a three-cluster function

 
           1 1 1 2 2 2 3 3 3= , , ,  ,J

JM LJ S JM J
A s A s A s f       x y  (1) 
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and by solving many body Schrödinger equation one 
has to determine intercluster wave function 

   ,J
Lf x y  and spectrum of bound state(s) or 

S-matrix for states of continuous spectrum. Jacobi 
vectors х and y determine relative position of 
clusters. Wave functions  ,A s    ( =1, 2, 3), 
describing internal motion of cluster consisted of Aα 
nucleons and with the spin sα, are assumed to be 
fixed, they posses some very important features, such 
as, for instance, they are antisymmetric 
andtranslation-invariant ones. Adiabaticity, 
connected with a fixed form of the wave functions 

 ,A s   , is the main assumption of the method 
which is well-known as the resonating group method 
[3]. Wave function is projector operator which 
reduces many-particle problem to three-body 
problem with nonlocal and energy-dependent 
potential (see detail in Ref. [3]). For amplitudes 
 

            , ; 3 3 ˆ ˆ, = ,J J
L l L l LM L

f f x y Y x Y y x y   (2)  

 
one can deduce an infinite set of the two-dimension 
integro-differential equations. This set of equations 
can be more simplified, if we introduce 
hyperspherical coordinates  ˆ ˆ= , ,x y  
 

= cos , = sin ,x y               (3) 
 

and construct full set of orthonormalized 
hyperspherical harmonics (see definition of the 
harmonics, for instance, in [4], [1]) 
 

        , , , , ,1 2 1 2
ˆ ˆ=K l l LM K l l l LML

Y x Y y    (4) 

 
then wave function (1) represented as

  

         1 1 1 2 2 2 3 3 3 , , ; , , ;1 2 1 2
, , ,1 2

= , , ,  ,JM K l l L K l l LJ S JM JK l l L
A s A s A s           

          
(5) 

 
where hyperradial components  , , ;1 2K l l L   of 
wave function obey an infinite set of 
integro-differential equations. Last step toward the 
simplification of numerical solution of such system 
of equations is to expand the hyperradial amplitudes

  , , ;1 2K l l L   over basis of hyperradial part of 

oscillator functions in six-dimension space 

 
     , , ; , , ; ,1 2 1 2

= , ,K l l L n K l l L n K
n

C b R b
 



      (6) 

 

where  , ,n KR b


  is an oscillator function 

     2 3 2
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and b  is oscillator length. 

Expansion over oscillator basis reduces the set of 
integro-differential equations to the system of linear 
algebraic equations for expansion coefficients 



    ,
,

ˆ, , , | , = 0,n c
n c

n c H n c E n c n c C   


 


                             (8) 

 
where multipole index c denotes channel of the 
hyperspherical basis  1 2= , , ;c K l l L . This system is 
relevant for bound states and for continuous 
spectrum states. To obtain spectrum of bound states, 
one can use diagonalization procedure for the 
reduced set of the equations. However, to find wave 
functions and elements of the scattering S -matrix, 
one has to implement in (8) proper boundary 
conditions for expansion coefficients. These 
conditions were thoroughly discussed in Ref. [1]. 

3 Spectrum of resonance states in 9Be and 9B 
 
To perform numerical calculations, we need to 

fix few parameters and select nucleon-nucleon 
potential. We start with selection of nucleon-nucleon 
potential. We exploit the Modified Hasegawa- 
Nagata potential (MHNP) [5, 6] to model 
nucleon-nucleon interaction. This is a semi-realstic 
potential and it was intensively used in numerous 
many-cluster systems, as it provides good description 
of the internal structure of clusters and interaction 
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between clusters as well After NN potential was 
selected, we need to fix three input parameters: 
oscillator length b , number of channels or number 
of hyperspherical harmonics and number of hyper 
radial excitations. We restrict ourselves with a finite 
set of the hyperspherical harmonics, which is 
determined by maximal value of the hyperspherical 
momentum Kmin. To describe the positive parity 
states we use allhyperspherical harmonics withthe 
hypermomentum K ≤ Kmin = 14, the negative parity 

states are described by the hyperspherical 
harmonics with K ≤ Kmin = 13.These amounts of 
the hyperspherical harmonics account for many 
different scenarios of three-cluster system decay. 
We also restrict ourselves with number of the 
hyperradial excitation nρ ≤ 100. This allows us to 
rich an asymptotic region, where all clusters are 
well separated and cluster-cluster interaction, 
induced by nucleon-nucleon potential, is 
negligible small.

 
 

Table 1 – Spectrum of bound and resonance states of 9Be calculated with the MHNP 
 

 Exp. AM HHB, MHNP 
J   E (MeV  keV)  (MeV  keV) E (MeV)  (MeV) 

3 / 2  -1.5735  -1.5743  
1 / 2  0.111 7  0.217  10 0.338 0.168 
5 / 2  0.8559 1.3  0.00077 0.15  0.897 2.363  10 5  
1 / 2  1.21 120  1.080  110 2.866 1.597 
5 / 2  1.476 9  0.282  11 2.086 0.112 
3 / 2  3.131 25  0.743  55 4.062 1.224 

23 / 2  4.02 100  1.33  360 2.704 2.534 

7 / 2  4.81 60  1.21  230 4.766 0.404 
9 / 2  5.19 60  1.33  90 4.913 1.272 

25 / 2    5.365 4.384 

7 / 2    5.791 3.479 
 
 

In present paper, the oscillator length b  is 
selected to minimize the bound state energy of alpha 
particle, which is obtained with b = 1.317 fm. This 
allows us to describe correctly the internal structure 
of the alpha particle. If we take original form of the 
modified Hasegawa-Nagata potential, we obtain the 
overbound ground state in 9Be and the bound state 
3/2– state in 9B. The latter contradicts to experiments. 
The similar situation was observed for the Minnesota 
potential.To avoid this unphysical situation, we 
changed slightly parameters of the MHNP in order to 
reproduce bound state energy of 9Be. Thus, by 
modifying the Majorana parameter, we obtain correct 
value of the binding energy of 9Be. This is achieved 
with m = 0.4389, which can be compared to the 
original value m = 0.4057. With this value of the 
Majorana parameter, the spectrum of resonance 
states in 9Be and 9B is calculated. 

Now we turn our attention to the spectrum of 9Be  
and 9B nuclei. Results of calculations with the MHNP 

is presented in Tables 1 and 2 where we compare our 
results with the experimental data [7]. Our 
calculations are in fairly good agreement with 
available experimental data. Energy and width of 
some resonance states are rather close to 
experimental data. For instance, parameters of 5/2– 

and 9/2+ resonance states in 9Be, and parameters 5/2–, 
1/2– and 5/2+ resonance states in 9B. 

That means that we found correct interaction 
between clusters in 9B and 9Be. In this paper as in the 
previous one [2], we use the same parameters of 
nucleon-nucleon interactions for all other Jπ states. 
Comparing results of presvious and present 
calculations, we conclude that the modified 
Hasegawa-Nagata potential generates more correct 
cluster-cluster interaction for large set of the Jπ states, 
thanthe Minnesota potential.We also conclude that 
spectrum of resonance states in 9B and 9Be strongly 
depends on peculiarities of nucleon-nucleon 
interaction.
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Table 2 – Experimental and theoretical spectrum of resonance states of 9B 
 

 Exp. AM HHB, MHNP 
J   E (MeV  keV)  (MeV  keV) E (MeV)  (MeV) 

3 / 2  0.277 0.00054 0.21  0.379 1.076  10 6  
1 / 2  (1.9)  0.7 0.636 0.477 
5 / 2  2.638 5  0.081  5 2.805 0.018 
1 / 2  3.11 3.130   200 3.398 3.428 
5 / 2  3.065 30  0.550  40 3.670 0.415 
3 / 2    4.367 3.876 

23 / 2    3.420 3.361 

7 / 2  7.25 60  2.0  200 6.779 0.896 
9 / 2    6.503 2.012 

25 / 2    5.697 5.146 

7 / 2    7.100 4.462 
 
 

Now we concentrate our attention on the 1/2+ 
resonance states in 9B and 9Be. In Figures 1 and 2 we 
display phase shifts of 33 scattering for the 1/2+ 
state in 9B and 9Be, respectively. These results are 
obtained with Kmax = 14 and with the MHNP. With 
such value of Kmax, 32 channels are involved in 
calculations and only three of them produces phase 
shifts which are not very small at energy region 0 ≤ E 
≤ 5 MeV. The phase shift connected with the channel 
c = {K = 0, l1 = l2 = L = 0} of 9Be shows resonance 
behavior at energies E = 0.338 MeV and Е = 1.432 

MeV.Second resonance state is also reflected in the 
second channel c = {K = 2, l1 = l2 = L = 0} as a 
shadow resonance. 

Phase shifts for 1/2+ state in 9B also exhibit 
resonance states at two energies Е = 0.636 MeV and 
E =2.875 MeV. As in case of 9Be, 1/2+ resonance 
states in 9B are connected with only one channel c = 
{K = l1 = l2 = L = 0}. Due to Coulomb interaction, 
resonance states in 9B are shifted to higher energy 
range with respect to position of these resonance 
states in 9Be. 

 
 

  
 

Figure 1 – Phase shifits for 3 3 scattering  
in 1/2+ state in 9Be 

Figure 2 – Phase shifts for 1/2+  
state in 9B 

 
 
 

To understand nature of 1/2+ and other resonance 
states in 9B and 9Be, we analyze wave functions. As 
was mentioned above wave function of three-cluster 
system is many-component and huge objects which 

is difficult to analyze. The simplest way for 
analyzing wave function of a resonance state is to 
study weights of oscillator shells. The weights are 
determined as follows 
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It is important to note that oscillator wave 

functions with small values of Nsh describe very 
compact configurations of three-cluster system, 
when distance between interacting clusters is very 
small. Oscillator functions with large values of Nsh  
account for configuration of three-cluster system 
with large distance between all clusters and/or when 
one cluster is far away from two other clusters. In 
Fig. 3 we show the weight Wsh of different oscillator 
shell Nsh (Nsh = 0, 1, 2, ...) in wave function of 
resonance states. One can see that wave function of 
the 1/2+ resonance in 9Be is similar to wave function 
of the resonance state in 9B and both of them are 
represented by the oscillator shells with large values 
of Nsh. Figure 3 display behavior of wave function 
which is typical for low-energy wave functions. In 
asymptotic region these functions has an oscillatory 
behavior. Like in two-body case with sort-range 
interaction, the smaller energy, the larger is distance 
to the first node of wave function. In oscillator space 
we have approximately the same picture as in 
coordinate space. This is because there is simple 
relation between wave function in coordinate space 
and expansion coefficients in oscillator 
representation (see detail, for instance, in [1]).  

 

 
 

Figure 3 – Weights of different oscillator shells in wave 
functions of 1/2+ resonance states in 9Be and 9B. 

 
 

By analyzing the total and partial widths, we 
determine the dominant decay channels of 
three-cluster resonance state. This analysis help us to 
shed some light on the nature of a resonance channel 
in many-channel system. It can be performed for two 
different trees of the Jacobi vectors, which were 
denoted as n = 9Be and 4He + 5He in Ref. [2]. The 1/2+ 
resonance state in 9Be and 9B has only dominant 

channel. In the first tree, the resonance prefer to 
decay into the channel, where the relative orbital 
momentum of two alpha particles and the orbital 
momentum of valence neutron (with respect to the 
center of mass of two alpha particles) equal zero. 
Partial width connected with that channel almost 
coincides with the total width. The same situation is 
observed in the second tree. There is also only one 
dominant channel with zero values of partial orbital 
momenta. The first orbital momentum represents 
relative motion of neutron around first alpha particle 
and the second one represents relative motion of 
second alpha particle with respect to the center of 
mass of the subsystem α + n. These properties of the 
1/2+ resonance states in 9Be and 9B are based on two 
important factors. First factor is the dominant role of 
the channel with the hypermomentum K = 0 in wave 
function of the resonance state. The second factor is 
connected with the essential properties of the 
hyperspherical harmonics with K = 0. With this value 
of hypermomentum, we have got only one 
hyperspherical harmonic which is independent on 
choice of the Jacobi vector tree. 

Let us now consider the Hoyle analogue states in 
9Be. We recall that the Hoyle state is a very narrow 
resonance state in 12C. It lies not far from the 
three-cluster threshold ( E = 0.38 MeV) and has very 
small width Г = 8.5 eV. This resonance state is 
created by collision of three alpha particles with total 
angular momentum and parity Jπ = 0+. As we see, the 
main features of the Hoyle resonance state that it is 
very long-lived resonance state (according to nuclear 
scale). If we look at Table 1, we find that 9Be has two 
resonance states (1/2+ and 5/2–) which lie close to the 
three-cluster threshold α + α + n. The 1/2+ resonance 
state is created by two values of the total orbital 
momentum L=0 and L=1. However, the resonance 
state is not narrow one, as ratio Г / Е is large Г / Е ≈ 
0.5. Meanwhile, the 5/2– resonance state is indeed 
narrow resonance state because width is small Г = 
23,6eV and besides ratio Г / Е is also very small: it 
equals Г / Е ≈ 2.63  10 5  in our model and 
experimental ratio is Г / Е ≈ 9,0 · 10–4. One can 
compare this ratio with the experimental ratio for the 
Hoyle state Г / Е ≈ 2,24 · 10–7. 

We believe that this resonance state is of the 
Hoyle-analogue state. This state has quite large 
half-life time, it could emit quadrupole gamma 
quanta and transit to the ground state of 9Be. This is 
one of possible ways for synthesis of 9Be. We 
assume, that in stars with large densities of 
alpha-particles and neutrons this is very plausible 
way of creating 9Be nuclei. 



35

Vasilevsky V.S. et al.                                                                          Phys. Sci. Technol., Vol. 3 (No. 1), 2016: 30-35

 
Figure 4 – Weights of different oscillator shells in wave 

function of the 5/2– resonance state in 9Be 
 
 
In Figure 4 we demonstrate weight Wsh of 

different shells in wave function of the 5/2– 
resonance state. It can be concluded from the Figure 
that the 5/2– resonance state is very compact object, 
as it mainly represented by the oscillator shells with 
small number of Nsh. Besides, wave function of the 
resonance state has a very large amplitude in internal  
 

 

region (Wsh ≤ 106). Such behavior of wave function 
of the 5/2– resonance state in 9Be is very similar to 
behavior of wave function of the Hoyle state in 12C.  

Three-cluster microscopic model was applied to 
study resonance states in mirror nuclei 9Be and 9B. 
The model make use of the hyperspherical harmonics 
to numerate channels of three cluster continuum and 
simplify of solving of the Schrödinger equation for 
many-particle and many-channel system. The 
modified Hasegawa-Nagata potential modelled 
nucleon-nucleon interaction. It was shown that the 
model with such NN interaction provides good 
description of parameters of resonance states. It was 
shown that 1/2+ states in 9Be and 9B are resonance 
states. Very narrow 5/2– resonance state in 9Be can be 
considered as the Hoyle-analogue state, we assume 
that this state is key resonance state for synthesis of 
9Be in a triple collision of alpha particles and neutron. 
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