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We present our study of kaonic three-body KNN , KNN  and KKK  and four-body KNNN , and KKNN  
clusters within the framework of a potential model using the method of hyperspherical functions in momentum 
representation. To perform a numerical calculations for the bound state energy of the light kaonic system, we use 
a set of different potentials for the nucleon-nucleon and KN  interactions, as well as for the kaon-kaon 
interaction. The calculations show that a quasibound state energy is not sensitive to the NN  interaction, and it 
shows very strong dependence on the KN  potential. We also compare our results with those obtained using 
different theoretical approaches. The theoretical discrepancies in the binding energy and width for the lightest 
kaonic system related to the different NN  and KN  interactions are addressed.  
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1 Introduction 
 
Nowadays, the study of exotic nuclear systems 

involving a K  is an important topic in hadron 
physics, because the existence of kaonic nuclear 
states is related to kaon condensation and to physics 
of the core of neutron stars that by today’s 
understanding are built up from exotic matter: pion 
and kaon condensates and quark matter [1, 2]. 
Kaonic nuclei carry important information 
concerning the K nucleon interaction in the nuclear 
medium. This information is very important in 
understanding kaon properties at finite density and in 
determining of the constraints on kaon condensation 
in high-density matter. The latter will allow one to 
adjust the methods developed in condensed matter 
physics for exciton and excitonic polariton 
condensates (see, for example, [3, 4]) to study the 
kaon condensation. The best way to understand the 
many body kaonic nuclear system is to study the 
simplest two-, three- and four-body clusters: ,KN  
KNN  and ,KNNN as well as double kaonic 
clusters, when one nucleon in the three- or four-body 
kaonic cluster is replaced by the K  meson. The 
light kaonic clusters KNN  and KNNN  represent 
three- and four-body systems and theoretically can be 

treated within the framework of a few-body physics 
approaches. In the recent past much efforts have been 
focused on the calculations of quasibound state 
energies and widths for three- and four-body kaonic 
clusters. A variety of methods have been used in 
configuration and momentum spaces, to obtain 
eigenvalues for energy and width of quasibound 
states using diverse sets of KN  and NN  
interactions. These include but are not limited by 
variational method approaches [5-15], the method of 
Faddeev equations in momentum and configuration 
spaces [16-28], Faddeev-Yakubovsky equations [26] 
and the method of hyperspherical harmonics in 
configuration and momentum spaces [29-28]. 
However, the predicted values for the binding energy 
and the width are in considerable disagreement. For 
example, for the K–

pp cluster the predicted values for 
the binding energy and the width are 9–95 MeV and 
20–110 MeV, respectively. 

On the experimental side, several experiments 
have been performed to search for the kaonic clusters 
using various nuclear reactions starting from the first 
measurement reported by the FINUDA collaboration 
for the K–

pp cluster [31] and including the most recent 
reports of J-PARC E15 and J-PARC E27 
collaborations [32, 33] and HADES collaboration 
[34]. Recent HADES collaboration partial wave 
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analysis of the reaction pp pK   at 3.5 GeV to 
search for the K–

pp bound state shows that at a 
confidence level 95% such a cluster cannot 
contribute more than 2–12% to the total cross section 
with a pK+Λ final state [34]. However, there are 
important reports of K–

pp search experiments done by 
DISTO collaboration and J-PARC E27 
collaboration. They reported some signal at 100 MeV 
below the K   and two protons threshold, which 
may be related to the kaonic cluster K–

pp. J-PARC 
E27 collaboration has observed a K–

pp – like structure 
in the d (  , K  ) reaction at 1.69 GeV/c, while 
Ref. [35] reports an indication of a deeply bound K–

pp 
state in the pp p K    reaction at 2.85 GeV. The 
situation is still controversial and the existence, for 
example, of the K–

pp quasibound state has not been 
established yet. Thus, the theoretical and 
experimental study of composite systems of K – 
mesons and nucleons is still a challenging issue in 
nuclear physics. 

Below we present a study of the lightest kaonic 
nuclear clusters using the method of hyperspherical 
functions. We focus on three- and four-body 
nonrelativistic calculations within the framework of 
a potential model for the three- and four-body kaonic 
clusters using the method of hyperspherical 
harmonics (HH) in momentum representation. 
Calculations for a binding energy and width of the 
kaonic three- and four-body system are performed 
using different NN potentials and kaon-nucleon 
interactions, as well as kaon-kaon interactions. Such 
approach allows one to understand the key role of the 
kaon-nucleon interaction and the importance of 
nucleon-nucleon interaction in the formation of 
quasibound states of the kaonic three- and four-body 
systems. 

 
2 Theoretical formalism 
 
The Hamiltonians of the three and four 

nonrelativistic particles for the KNN  and KNNN  
systems, respectively, read as 

 


33 _ _1 2
1 2

= ,N N
K N K N

H T V V V  
        

 (1) 

 3

44 _
1 < 3 =1

= ,N Ni j K Ni j i i

H T V V
 

           (2) 

where  3T and  4T are the operators of the kinetic 
energy for three- and four-particle system, 
respectively, N Ni j

V  is the nucleon-nucleon potential 

and 
iKNV  is a pairwise effective antikaon interaction 

with the nucleon. The effective interactions of the 
,KN ,KN KK  and KK  two-body subsystems are 

discussed in detail in Refs. [5, 6, 10, 14, 36 – 39]. 
Below, we use two effective KN  interactions that 
were derived in different ways. The effective  KN
interactions can be derived phenomenologically or 
constructed using the chiral SU(3) effective field 
theory, which identifies the Tomozawa-Weinberg 
terms as the main contribution to the low-energy 
KN  interaction [37]. The potential for the 
description of the KN  interaction was derived in 
Refs. [5, 10] phenomenologically, using KN  
scattering and kaonic hydrogen data and reproducing 
the (1405)  resonance as a K–

pp bound state at 1405 
MeV, and the decay width of (1405)  is also taken 
into account in this potential. We refer to this as the 
Akaishi-Yamazaki (AY) potential. The AY potential 
is energy independent. The other KN  interaction 
given in Ref. [36] was derived based on the chiral 
unitary approach for the s – wave scattering 
amplitude with strangeness S = –1, and reproduces 
the total cross sections for the elastic and inelastic 
K–p scattering, threshold branching ratios, and the 
  mass spectrum associated with the  (1405). 
Hereafter we refer to this energy-dependent potential 
for the parametrization [40] as the HW potential. 
Both potentials are constructed in the coordinate 
space, are local, and can be written in the one-range 
Gaussian form as 

 

 2
_ _

=0,1
( ) = exp / ,I I

K N K NI
V r U r b P         (3) 

 
where r is the distance between the kaon and the 
nucleon, b is the range parameter and I

KNP  is the 
isospin projection operator .  The values of the 
potential depth UI–0 and UI–1 for eachinteraction are 
given in Refs. [10] and [36] and the range parameter 
is chosen to be = 0.66b  fm for the AY potential and 

= 0.47b  fm for the HW potential. 
To describe the 

i jN NV  nucleon-nucleon 
interaction, we use several different NN  potentials: 
the realistic Argonne V14 (AV14) and V18 (AV18) 
[41, 42] potentials, the semi-realistic Malfliet and 
Tjon MT-I-III (MT) [43] potential, the Tamagaki 
G3RS potential [44], which we hereafter refer to as 
the T potential, and potential [45], which we refer to 
as the M potential. Therefore, the use of different NN 
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potentials and KN  interactions allows one to 
perform a validity test for the lightest kaonic clusters 
against various NN  and KN  interactions. 

The binding energies and the wave functions of 
the three and four nonrelativistic particle can be 
obtained by solving the Schrödinger equation with 
the Hamiltonians (1) and (2), respectively. In our 
approach we use the hyperspherical harmonics 
method that represents a technique of solution of the 
Schrödinger equation to find the bound and 
scattering states for a few body system. The main 
idea of this method is the expansion of the wave 
function of the corresponding nuclear system in 
terms ofhyperspherical harmonics that are the 
eigenfunctions of the angular part of the Laplace 
operator in the six-dimensional space (three-body 
problem) or in the nine-dimensional space 
(four-body problem). The details of this method can 
be found in the monographs [46, 47, 48]. In our 
calculations we use the HH method in momentum 
representation [49, 48]. One starts from the 
Schrödinger equation for the three or four particles 
with the Hamiltonians (1) and (2), respectively, and 
rewrites this equation in the integral form in the 
momentum representation using the set of the Jacobi 
momenta qi in 3(N – 1) – dimensional momentum 
space. These momenta are the trees of Jacobi 
coordinates for three- or four-particle system 

12... 1
1

=112... 1 12...

1= ,
i

i i
i j j i

ji i

m m m
m m






 
 

 
q q q i = 1, 2, ..., N 

– 1, where mj and qj are the particles masses and 
momentum vectors conjugated to the position 

vectors rj respectively, 12...
=1

=
i

i j
j

m m  and N is the 

number of particles. After that, one introduces the set 
of the hyperspherical coordinates in the momentum 

space given by the hyperradius 2 = 
1

2

=1

N

i
i

q


  and the 

set of angles  , which define the direction of the 
vector ϰ in 3(N – 1) – dimensional momentum space, 
as well as the symmetrized hyperspherical harmonics 
in momentum representation ( , , )

     that are 
written as a sum of products of spin and isospin 
functions and hyperspherical harmonics [50]. Above, 
for the sake of simplicity, we denoted by  the 
totality of quantum numbers on which the N – body 
hyperspherical harmonics depend and the integer μ is 
the global momentum in the 3(N – 1) – dimensional 
configuration space, which is the analog of angular 
momentum in case of N – 2. The HH are the 

eigenfunctions of the angular part of the 3(N – 1) – 
dimensional Laplace operator in configuration space 
with eigenvalue LN(LN + 1), where LN = μ + 3(N – 2) / 
2 and they are expressible in terms of spherical 
harmonics and Jacobi polynomials [46, 47, 48]. By 
expanding the wave function of N bound particles in 
terms of the symmetrized hyperspherical harmonics 
in momentum space 

 
3 4

2

,
( , ) = ( ) ( , , ),

N

u 
 

 

 



      

    
(4) 

and substituting Eq. (4) into the corresponding 
integral Schrödinger equation in the momentum 
representation, one obtains a system of coupled 
integral equations for the hyperradial functions 

( )u
   for the system of three or four particles. The 

detailed description of the formalism for the K–
pp 

cluster can be found in Ref. [28]. Here we expand the 
wave function of three bound particles in terms of the 
symmetrized hyperspherical harmonics 

( , , )
l l Lp q
     in momentum representation: 

( , ) = ( ) ( , , ),
l l L l l Lp q p q

l lp q

u 


   p q   where   is 

the grand angular momentum, L is the total orbital 
momentum, lp and lq are the angular momenta 
corresponding to the Jacobi momenta p and q that are 
conjugated to the standard Jacobi coordinates for 
three particles, ϰ is the hyperradius in the six 
dimensional momentum space ,  and Ω ϰ is the set of 
fiveangles which define the direction of the vector ϰ. 
The functions ( , , )

l l Lp q
     are written as a sum 

of products of spin and isospin functions and HH, 
using the Raynal-Révai coefficients [51]. For the 
system K–

pp the wave function is antisymmetrized 
with respect to two protons, while for the K–K–

p 
system it is symmetrized with respect to two 

antikaons. For the hyperradial functions ( )
l l Lq pu


  

we obtain the coupled integral equations. By solving 
the coupled integral equations one can find the 

hyperradial functions ( )
l l Lq pu


  for a given L and 

the binding energies for the K–
pp and K–K–

p systems. 
For the system KNNN  the wave function is 
antisymmetrized with respect to three nucleons, 
while for the K–K–

pp system it is symmetrized with 
respect to two antikaons and antisymmetrized with 
respect to two protons. The hyperradial functions 
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( )u


  for four-body systems can be found by 

solving the coupled integral equations and use them 
to construct the corresponding wave functions (4). 
To solve the coupled integral equations for the 
hyperradial functions ( )u

   for the system of three 
or four particles obtained from the corresponding 
Schrödinger equations, we include only the real part 

of the KN
_

K K  and KK  interactions, quite in the 
same way as the earlier variational studies [13, 14, 
29]. Using the wave function, the width of the bound 
state can be evaluated in a perturbative way from the 
imaginary part of the KN  interaction as Г = – 2 

 12 13Im ( ) ( )KN KNV r V r    for K–
pp and K–K–

p  

clusters. As it is stated in review [52], as well as 
demonstrated in the recent calculations of the width 
for the  K–

pp system [54] using a coupled-channel 
complex scaling method with Feshbach projection, 
this is a reasonable approximation. For an 
approximate evaluation of the width the imaginary 
part of the complex potential has often been treated 
perturbatively in the early variational studies [13, 14, 
29] and by many authors, see for example [8, 9, 12, 
13, 14, 15, 29, 30, 39]. In the same way the width of 
the bound state for KKK  system is evaluated from 

the imaginary part of the 
_

K K  interactions as 

=  2 _ 12 _ 23Im ( ) ( )
K K K K

V r V r    
 

 and the 

widths for the KNNN  clusters are evaluated 

through the expression _= 2 Im ,
K N

v   

where 
KN

v  sums over all pairwise KN  
interactions. 

In calculations with the energy dependent HW 
potential we follow Ref. [14] and use a “ corrected” 
energy dependent complex potential, where the 
strength for each channel is determined so as to 
reproduce the KN  scattering amplitude predicted in 
Ref. [40] and is parametrized by polynomial in terms 
of the KN  energy. Also, to determine the KN  
energy in the K–

pp system, the authors of Ref. [14] 
examined two ansatz, "Type I" and "Type II", which 
are given as Eqs. (20) and (21) in Ref. [14], 
respectively. In the current study is employed the 
"Type II" ansatz. 

In the following Section we present results for a 
single-channel calculation using effective KN , KK  
and KK  interactions. 

3 Results of numerical calculations and 
discussion 

 
3.1 K–

pp cluster 
Let’s start with the results of our calculations of 

the K–
pp cluster recently reported in Ref. [28]. Results 

of these calculations for the K–
pp cluster are presented 

in Table 1. For the calculations of the binding energy 
and the width with the method of HH we use as input 
MT, T, and AV14 potentials for the NN  interaction, 
while for the KN  interaction we use the 
energy-dependent effective HW and the 
phenomenological AY potentials. Such an approach 
allowed us to examine how the K–

pp cluster’s 
structure depends on different choices of the KN  
interactions for the same NN  potential, as well as to 
investigate its dependence on different choices of the 
NN  interaction for the same KN  interaction, and 
to understand the sensitivity of the system to the 
input interactions.The analysis of the calculations 
presented in Table 1 show that the AY potential as 
the KN  interaction input falls into the 46-47 MeV 
range forthe binding energyof the K–

pp cluster, while 
the chiral HW KN  potential gives about 17-21 
MeV for the binding energy. Thus, the values for the 
binding energy for the K–

pp system obtained for the 
different NN  potentials are in reasonable 
agreement, and the ground state energy is not very 
sensitive to the NN  interaction. However, there is a 
very strong dependence on the antikaon-nucleon 
interaction. When we employ the effective 
energy-dependent chiral theory based HW potential 
for the KN  interaction and different NN  
interactions, as inputs, we predict a weakly bound 
K–

pp cluster. This is similar to Ref. [14], where the 
authors employed several versions of 
energy-dependent effective KN  interactions 
derived from chiral SU(3) dynamics together with 
the realistic AV18 NN  potential. Our calculations 
also confirm results reported in earlier studies [13, 
21, 29] employing the same type of KN  interaction. 
The energy of the bound state, as well as the width 
calculated for the AY potential are more than twice 
as big as those obtained for the energy-dependent 
chiral KN  HW potential. Therefore, the highest 
binding energies are obtained for the 
phenomenological AY potential. Let’s compare our 
results with those obtained with different variational 
approaches. Our result for the binding energy is in 
good agreement with the result from Ref. [10], where 
the binding energy for the K–

pp cluster was calculated 
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by employing the AY potential as the KN  
interaction and T potential as the NN interaction. 
However, the decay width seems rather different 
among two studies: in the present study the width is 
74.5 MeV, while that obtained in Ref. [10] is 61 
MeV. This should be related to the different behavior 
of the waves functions obtained using the variational 
approach and the method of hyperspherical 
functions. Recently it was reported that "resonance 
and coupled-channel problem are key ingredients in 
the theoretical study of the K–

pp" [54]. Those authors 
employ a coupled-channel Complex Scaling Method 
combined with the Feshbach method since this 
approach can simultaneously treat these two 
ingredients. Interestingly enough, their calculations 
[54, 53] for the binding energy and width are 
consistent with our results obtained within the single 
channel potential model. The comparison of our 
calculations with results obtained using the HH 
method in configuration space [29] and differential 
Faddeev equations [28] also are in reasonable 
agreement. This is a good indication that the binding 
energy does not depend significantly on the method 
of calculation. 

3.2 K K p  cluster 
Three-body problem with two mesons and one 

baryon have received considerable attention in the 
recent literature [38, 39, 55, 56]. The baryonic 
systems KKN  and KKN  with two kaons were 

investigated in Refs. [38, 39, 57]. We study a 
possible bound state of the K–K–

p cluster with S = –2, 
I = 1/2, J+ = 1/2+ using the effective s – wave AY and 
HW potentials assuming that this state is formed due 
to the strong K–

p attraction.  
The strength of the s  wave KK  interaction 

for the isospin I = 0 is zero due to Bose statistics, and 
we consider a weak repulsion for the isospin I = 1 
that reproduces the scattering lengths = 0.14

K K
a   

fm for the range parameter b = 0.66 fm (AY 
potential) and = 0.47b  fm (HW potential). The 
results of calculations for the binding energies for the 
K–

p and K–K–
p, the bound K–K–

p state without K–K– 
interaction, and the root-mean-square radius of the 
K  distribution are presented in Table 2. For the AY 
potential, the K–K–

p system is still bound even with a 
much stronger KK  repulsion, while for the HW 
potential there is the bound state with the energy 0.01 
MeV relative to the K–

p + K– threshold. Thus, 
although the KN  with I = 1 is attractive, the 
attraction is not strong enough to overcome the KK  
repulsion. For the width within the method of HH we 
obtain 58.6 MeV and 41.6 MeV with the AY and HW 
potentials, respectively. Our results for the binding 
energy of thesystem obtained by the method of HH 
are in reasonable agreement with calculations 
obtained using a variational method [39] and the 
Faddeev calculations [26].

K p
E 

Table 1 – The binding energy B and width Γ for the K–
pp system calculated in the framework of the method of HH in 

the momentum representation for different interactions. NN potentials: AV14 [41], MT [43] and T [44]. KN interactions: 
AY [10] and HW [36].  is two-body energy in the K–

pp cluster. 

AV14+AY MT+AY T+AY AV14+HW MT+HW T+HW
B, Mev 46.2 46.5 46.3 17.2 20.5 20.6
Γ, MeV 66.7 84.3 74.5 44.3 48.1 49.5

EK-p, Mev 29.9 10.9 

Table 2 – The bound state energies of K p (E2) and K K p  (B) systems, and the root-mean-square radius of 
thedistribution.is the binding energy measured from the two-body threshold 

���� ��� � �� >���, �� ��,��� �,��� ��,��� 
�� �� 1.36 30.0 31.7 1.7

����� = 0 �� 35.3 5.3
HW �� 1.96 11.42 11.43 0.01

����� = 0 �� 12.21 0.79
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3.3 KKK system 
Recently, there has been increased interest in 

few-body systems constituted by two or more 
kaons. Particularly noteworthy is the possibility 
of formation of the quasibound states in a KKK
system. We study the KKK system using a 
nonrelativistic potential model in the framework 
of the method of HH in momentum representation 
and consider the KKK system as three interacting 
kaons. Once the two-body interactions for the KK
and KK subsystems are determined one can 
determine the wave function of the KKK system 
by solving the Schrödinger equation for the 
Hamiltonian 3 12

ˆ ( )KKH T V r   13 23( ) ( )KK KKV r V r 

where the potential energy is the sum of the 
effective KK and KK interactions that are the 
functions of the interparticle distances rij. For the 
description of the effective kaon-kaon 
interactions we use the local potentials from Refs. 
[39] and [38] that can be written in one-range 
Gaussian form (3). The set of values of the 
potential depth I

AU for eachinteraction is given in 
Refs. [39, 38] and the range parameteris chosen to 
be the same forandinteractions. We choose two 

optimized values for the range parameter: b = 0.66 
fm (set A) and b = 0.47 fm (set B). The strength of 
strongly attractive s – wave KK interactions was 
assumed to be the same for the isospin I = 0 and 
isospin I = 1, while the strength of the s – wave
KK interaction for the isospin I = 0 is 0I

KKU  due to 
Bose statistics and we consider a weak repulsion 
for the isospin I = 1. In Ref. [39] the KK  
interaction is derived under the assumption 
thatforms the quasibound states f0 (980) and a0 
(980) in I = 0 and I = 1 channel, respectively, and 
it reproduces the masses and widths of these 
resonances. The strength of the repulsive KK
interaction inwas fixed to reproduce a lattice QCD 
calculation [58] for the scattering length

0.14
K K

a     fm, and a weaker repulsion that 
corresponds to the scattering length 0.10

K K
a      

fm. Results of calculations for the set of potentials 
A when the KK interaction reproduces the 
scattering lengths 0.14

K K
a     fm and 0.10

K K
a    

fm are denoted as A1 and A2, respectively. 
Correspondingly, the set of potentials Bthat 
reproduces those different scattering lengths 
hereafter we refer as B1 and B2.

 
 

Table 3 – Results of calculations of different characteristics of the KKK  system  
 

 Fadeev[59] A1[59] A1 A2 B1 B2 Separable AMY [60] 
potential 

Mass, Mev 1420 1467 1469.4 1468.2 1464.1 1463.8 1463.4 
� 2� , MeV 25 55 42 41.1 48.4 49.1 – 

�, Mev  21 18.6 19.8 23.9 24.2 24.6 

√� �� >, Mev  1.6 1.72 1.65 1.61 1.56 1.52 

�� distance, fm  2.8 3.2 2.92 2.72 2.70 2.68 
���� � ��, fm  1.7 1.78 1.68 1.66 1.62 1.60 

������ distance, fm  1.6 1.68 1.65 1.64 1.58 1.55 
����� � �� distance, fm  2.6 2.9 2.86 2.55 2.50 2.47 
 
 
The solution of a system of coupled integral 

equations for the hyperradial functions allows us to 
construct the wave functionΨ for the KKK system 
and to determine the binding energy B. A reasonable 
convergence for the ground state energy is reached 
for the grand angular momentum max 10  and we 
limit our considerations to this value. The results of 
our calculations for the binding energy and the width 
for the KKK system along with the results obtained 

with a coupled-channel approach based on the 
solution of the Faddeev equations in momentum 
representation and the variational method [59] are 
presented in Table 3. The total mass the KKK system 
ranges from 1463.4 to 1469.4 MeV when we 
consider the sameK meson mass 496Km  MeV as in 
Ref. [59]. The width falls within the 41 - 49 MeV 
range for all sets of theandinteractions. The 
quasibound state for the KKK with spin-parity0-and 
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total isospin 1/2 is found to be below the three-kaon 
threshold. The comparison of our results with the 
results for the binding energy 21 MeV (the mass is 
1467 MeV) and the width 110 MeV obtained with 
the variational method in Ref. [59] shows that while 
the binding energy found within the HH and 
variational calculations are close enough, the percent 
differences of the results for the width is less than 
26%. A reason of this difference is related to the 
different behavior of the wave function of the KKK
system obtained within the variational method and 
the method of HH. The wave function within the 
method of HH is obtained using the criterion of 
conversion of the binding energy with the accuracy 
about 0.2 MeV and consideration of the next terms 
with 10  in the expansions (4) only very slightly 
changes the binding energy. However, the width that 
is calculated using the perturbative approach more 
sensitive to the wave function and does not converge 
so fast as a binding energy. This leads to the different 
overlapping of the imaginary part of the ( )KKV r
potential. The difference between the HH and 
Faddeev calculations [59] is understandable because 
in Ref. [59] thesystem is studied with a 
coupled-channel approach based on solving the 
Faddeev equations considering the KKK , K , and 
K channels and using as input two-body matrices 
that generate f0 (980) and a0 (980)resonances, while 
in the present calculations we use a single-channel 
three-body potential model. In addition our 
calculation is carried out in non-relativistic approach, 
whereas the Faddeev calculation is done in 
semi-relativistic approach using two-body 
amplitudes that are calculated by solving a 
relativistically covariant Bethe-Salpeter equation in a 
coupled-channel approach and using the on-shell 
factorization method. Such a difference could make 
large discrepancy in the obtained results. 

We also perform calculations for the KKK
system using s–wave two-body separable potentials 
with Yamaguchi form factors from Ref. [60] that also 
used in Faddeev and Faddeev-Yakubovsky 
calculations [26] for K K p  theand K K pp  kaonic 
clusters. The corresponding results are presented in 
the last column of Table 3 and are very close to the  
 

results obtained using the effective local kaon-kaon 
interactions for the set B. Thus, our calculations 
within three body nonrelativistic potential model 
predict a quasibound state for the KKK system with 
mass around 1460 MeV that can be associated with 
the K(1460) resonance. Our results support the 
conclusion obtained through the variational 
calculations that K(1460) could be considered as a 
dynamically generated resonance. 

3.4 KNNN clusters 
Recently Faddeev-Yakubovsky calculations [26] 

were made for the four-particle K ppn and K K pp 

kaonic clusters, where the quasibound states were 
treated as bound states by employing real s–wave 
two-body separable potential models for the KK and 
K the nucleon interactions as well as for 
theinteraction. Fully four-body nonrelativistic 
realistic calculations of KNNN  and KKNN
quasibound states within the method of HH in 
configuration space, using realistic NNpotentials and 
subthreshold energy dependent chiral KN
interactions, were presented in Ref. [29]. Giving that 
below we present the results of our calculations for 
the KNNN  and KKNN quasibound states in the 
framework of method of HH in momentum 
representation using AV18 [42] and M [45]potentials 
and AY and HW KN interactions as inputs. To find 
the binding energies with above mentioned set of 
potentials, we solve a system of coupled integral 
equations for the hyperradial functions ( )u

  . In the 
calculations we limit our consideration with the value 
μmax = 10 getting a reasonable convergence for the 
binding energy. In Table 4 we present our results for
KNNN cluster that we compare with those obtained 
via different methods. The results of our calculations 
for the energy and the width show dependence on 
theNN potentials and on the KN interactions. 
However, this dependence is dramatically different: 
for the same KN interaction and different NN 
potentials the ground state energy and the width 
change by about 3-15 %, while for the sameNN 
potential and differentinteraction the energy changes 
by a factor of more than 3 and the width changes by 
more than twice.
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Table 4 – The binding energyand widthfor thesystem calculated in the framework of the method of HH in the momentum 
representation for different interactions with results from Refs. [9], [26] and [29]. The parity includes the eigen parity of 
antikaon. 

�� T AV18+AY M+AY AV18+HW M+HW [29] [26] [9]

������ 12
�� 0 �, Mev 92.1 97.9 28.6 28.9 29.3 69 110.3

�, Mev 83.4 84.1 30.3 30.8 32.9  21.2

������ 12
�� 1 �, Mev 64.6 66.7 17.2 18.7 18.5

�, Mev 74.2 80.4 27.1 31.4 31.0

������ 12
�� 1 �, Mev 101.9 107.6 25.8 28.1  96.7 

�, Mev 87.9 89.8 28.1 31.2  12.5

Figure 1 – Nucleon density distributions 
for and clusters 

Figure 2 – Dependence of the two-nucleon density 
distributions in and clusters on the internucleon distance

Figure 3 – Dependence of thedensity  
with isospininandclusters onrelative distance 

For the comparison let’s mention that the authors 
of Ref. [29] obtained 29.3 MeV and 32.9 MeV, and 
18.5 MeV and 31.0 MeV for the binding energy and 
the width ofthe K–ppn and K–pnn clusters, 
respectively, while calculation within the 
Faddeev-Yakubovsky equations [26] with separable 
potential models for the K –nucleon and the 
nucleon-nucleon interactions leads to very deep 

ground state energyMeV forsystem. The comparison 
of our results for the K–ppn and K–pnn clusters 
obtained for AV18NN interaction and HW KN
interaction with calculations [29] within the 
variational HH method for the AV14 NNinteraction 
and shallow chiral KN interaction shows a reasonable 
agreement. The predictions [9] for the binding 
energy and the width for the kaonic clusters studied 
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based on a framework of antisymmetrized molecular 
dynamics and employing adopted AY [5] potential as 
a bare KN interaction and the type of T [44] potential 
as a bare NNinteraction are presented in the last 
column of Table 4. In our calculations we use the 
same parametrization of the AY and HW potentials 
as in Section III A. As is seen from Table IV there is a 
reasonable agreement for the widths for the K–ppn 
and K–pnn clusters among the present study and 
study [29] in case of HW potential. However, the 
widths of the K–ppn and K–pnn systems are largely 
different among our study and an earlier study [9] in 
the case of AY potential. To understand these 
discrepancies and compare our results with Ref. [9], 
we performed the calculations for the KN interaction

0 2
0( ) (593 )exp[ ( / 0.66) ]I

KNV r i r     and use for the 
imaginary part of the potential the different values of

0 20  , 40, 83 MeV, respectively [5, 9]. The results 
are the following: K–pрр = (101.9, 19.8) MeV, 
(101.9, 38.7) MeV, (101.9, 87.9) MeV; K–pрn, ( , )B 
=(92.1, 18.7) MeV, (92.1, 37.4) MeV, (92.1, 83.4) 
MeV; K–pnn, ( , )B  =(64.6, 16.3) MeV, (64.6, 32.6) 
MeV, (64.6, 74.2) MeV, that are in agreement with 
the corresponding calculations from Refs. [5, 9] that 
lead to narrow widths only for small values of 0 . If 
the binding energy is large and lies below the 
threshold of the main decay channel   , as a result 
we have the width of the quasi-stable discrete bound 
state less than the binding energy and complex part of 
the KN potential should be small. The value 0 20 
MeV can reproduce the results of the width from 
Refs. [5, 6, 7, 8, 9]. In our approach we can reproduce 
the narrow width reported in Ref. [9] only for the 
small value of the the imaginary part of the AY 
potential. Interestingly enough, our calculations for 
the AY interaction indicate that for the system
KNNN  the cluster K–pрр is more deeply bound 
K–pрn than thethat contradicts to the results [9]. In a 
shell-model picture, one of three protons in the K–pрр 
should be raised up to 0p orbit due to Pauli principle, 
while all nucleons in K–pрn occupy the 0s orbit. So, 
the naϊve expectation is that the K–pрn is lower than 
the K–pрр energetically. From the other side the 
larger number of the strongly attractive K–p pairs in 
the 3

2( ,1)  state than in 1
2( ,0)  state may cause a 

lowering of theT=1 state, even below the T = 0, 
although the third proton in the T = 1 state should be 
flipped up to the orbital 3/2(0 )p . The final picture 
depends on the strength of KN interaction. The 
attractive AY interaction is much stronger than the 

effective HW interaction. The strength of KN
interaction plays an important role that may lead to 
the nuclear compression. Following Ref. [61] we 
calculated a nucleon density distribution ϛN(r) 
averaged over angular dependence multiplied by r2, 
wherer is the distance of the nucleon from the center 
of mass for K–pрр, or K–pрn clusters, shown in Fig. 1. 
For K–pрр cluster one can observe a significant 
spatial shrinkage when the AY KN interaction is 
used. Since the KN potential is much more attractive 
in the I = 0 channel than in the I=1channel, different 
distribution of protons and neutrons is expected in 
kaonic clusters. Such results have already been 
reported in the early study within a new framework 
of the antisymmetrized molecular dynamics method 
in Refs. [8] and [9]. Probably in a K  – nuclear 
system is preferable a structure where the proton 
distribution differs from the neutron distribution, 
such a structure dynamically produced in the 
hyperspherical function treatment. Particularly, the 
composition of the K ppp wave function within our 
formalism is the following: 

 
3/2 ,1[ ( 1 / 2, 0) ] , 93%,K pp T J p

      
3/2 ,1[ ( 0, 1 / 2) ] , 6.4%,K p T J pp

      
3/2 ,1[ ( )( 3 / 2, 3 / 2) ] , 0.6%K ppp T J p

      . 
 
Our calculations show that the dominant 

contribution into the total wave function of the 
K–pрр system is the 3/2 ,1[ ( 1 / 2, 0) ]K pp T J p

   
configuration. While the K–p interaction is much 
stronger than the K–n, the protons preferably 
allocate near the K– and their kinetic energy 
increase. However, the total energy decreases due to 
the strongly attractive AY K–p interaction. As a 
result the K–pрр binding energy of thebecomes 
larger than that for the K–pрn. In Table 5 are 
presented the kinetic energy per nucleon for a 
proton and a neutron in KNNN , as well as the 
expectation value of the KN interaction. To estimate 
the expectation values of the kinetic energy and of 
the KN potential energy per nucleon the particle 
numbers are counted following Ref. [9] using 
Clebsch-Gordan coefficients. The particular 
numbers of protons and neutrons are 2.67 and 0.33, 
respectively, for K–pрр and both are equal 1.5 for 
K–pрn. Analysis of Table 5 and all above notes gives 
a possible explanation why the K–pрр cluster is 
more deeply bound than the K–pрn when the 
strongly attractive AY potential [10] is used, while 
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when the input is the HW potential we have an 
opposite picture. To reveal the characteristic 
structure of K–pрр and enhancing the difference 
between the K–pрр and K–pрn clusters we calculate 
density distributions of the NN and KN pairs as 
functions of the respective nucleon-nucleon and 
antikaon-nucleon distances using Eq. (32) from Ref. 
[14]. In Fig. 2 is shown two-nucleon density 
distribution ϛNN(r) multiplied by r2 in the K–pрр and 
K–pрn clusters for the AY and HW potentials. The 
two-nucleon distribution shows the pronounced 
maximum at the short-distances 0.63 fm and 1.34 
fm for the K–pрр and K–pрn clusters, respectively, in 
the case of strong AY interaction. For relatively 
shallowly bound by the HW potential K–pрр and 
K–pрn clusters the maximum is pronounced at 2.02 
fm and 2.05 fm, respectively, that reflects relatively 
weak binding of the systems. One can also 
understand a reason for the deeper binding of K–pрр 
and K–pрn thanin case of AY potential by analyzing 
thedensity distribution. Because the KN potential in 
isospin-zero channel plays a key role in the deep 
binding of K clusters, we calculate the projected 
density distributions for KN pairs with isospin I = 0 

in the K–pрр and K–pрn clusters. The results of 
calculations of the normalized projected density

, 0 ( )KN I r  are shown in Fig. 3. As is seen in Fig. 3 the

KN density distribution with isospin I = 0 has its 
maximum at zero distance between the antikaon and 
each nucleon that reflects the strong KN attraction in 
the I = 0 channel. The comparison of the KN density 
distribution shows that one is bigger for the K–pрр 
cluster compare to that for the K–pрn. From the 
projected density distributions for the KN pairs with 
isospin I = 0 configuration calculated mean-square 
distances KNR are 1.45 fm and 2.04 fm for the K–pрр 
and K–pрn clusters, respectively. The later facts 
reflect relatively strong binding of the K–pрр 
system. Thus, the K–pрр is compacter than the 
K–pрn cluster.  

Based on the results of our calculations, we can 
conclude that the pairwise KN interaction plays a 
major role in the formation of the kaonic bound state 
and the effective KN interaction based on chiral 
SU(3) dynamics [36] leads to a relatively modest 
binding for the K–pрт, K–pтт and K–pрр clusters. 
Our results confirm the calculations [29]. 

 
 
Table 5 – Nucleon energy inandclusters. Expectation values of the kinetic energyand of theinteraction per nucleon 
calculated in the framework of the method of HH in the momentum representation for the AY and AV18 interactions 

 
  MeV/N  MeV/N

 Proton 78.1 -195.2
 Neutron 49.3 -29.1

 Proton 72.4 160
 Neutron 55 38.2

 
 

KKNN cluster 
A decade ago in Ref. [7] a deeply bound double 

K–K–рр cluster was predicted to be deeply bound 
with binding energy of 117 MeV and width 35 
MeV. Barnea, Gal and Liverts [29] perform a 
variational HH calculation in configuration space 
for the K–K–pр system based on the shallow chiral
KN interaction model with the self-consistent 
energy dependence taken into account and 
obtained very shallow bound states with a binding 
energy that is substantially smaller than earlier 
prediction [7]. When in our calculation the HW 
potential is used the similar result to the early study 
[29] is obtained. In our calculations with the AY 
interaction, as in Section III D, we employ the 
potential 0 2

0( ) (593 )exp[ ( / 0.66) ]I
KNV r i r     using 

for the imaginary part of the potential the values ω0 
= 20, 40, 83 MeV, respectively. In Table VI are 
presented results when ω0 = 83 MeV. The 
corresponding values for the width are 72.4 MeV 
and 73.7 MeV for AV18 and M potentials, 
respectively, that are close enough to the widths 
obtained using the HW interaction. However, the 
binding energy is almost three times bigger. When

0  20MeV and 40 MeV, respectively, Г = 17.9 
MeV and Г = 35.8 MeV for the AV18 potential, 
and Γ = 18.5 MeV and Γ = 37.1 MeV for M 
potential. Thus, our results with the AY KN
interaction are close to the earlier prediction [7] 
when ω0 = 40 MeV and the binding energy is in a 
reasonable agreement with recent 
Faddeev-Yakubovsky calculations [26].
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Table 6 – The binding energyand widthfor thesystem calculated in the framework of the method of HH in the momentum 
representation for different interactions with results from Refs. [7], [26] and [29]. 

 
  AV18+AY M+AY AV18+HW M+HW [29] [26] [7]

 , Mev 91.6 92.7 31.5 31.9 32.1 93 117 
 , Mev 72.4 73.7 78.1 79.2 80.5  35 

 
 

4 Conclusions 
 
Within the framework of a potential model for 

the kaonic clusters K–pр, K–K–р, KKK , KNNN , 
and K–K–pр we perform nonrelativistic three- and 
four-body calculations using the method of 
hyperspherical harmonics in the momentum 
representation. We examine how the binding energy 
and width of the K–pр cluster depends on different 
choices of the KN and NN interactions. Our 
consideration includes the realistic Argonne V14 
[41], the semi-realistic MT [43] and T [44] potentials 
as inputs for the NN interaction and we employ the 
phenomenological AY potential and HW potential 
constructed based on chiral SU(3) dynamics, as 
inputs for the KN  interaction. For all types of 
considered NN interactions, our calculations predict 
deeply bound states for the AY KN interaction and a 
relatively shallowly boundcluster for the effective 
chiralinteraction. Moreover, the K–pр cluster is the 
most strongly quasibound three-body system. The 
results of our calculations show that the binding 
energy of the K–pр system depends entirely on the 
ansatz for the KN interaction and substantially 
changes when we use the AY and HW KN
interaction. In regard to the sensitivity of the binding 
energy to the details of the NN potentials, Ref. [14] 
found that when the K–pр system is weakly or deeply 
bound, the dependence on different types of NN 
interactions is weak. In fact, our study confirms this 
conclusion using in calculations Argonne V14 [41], 
the semi-realistic MT [43] and T [44] NN potentials. 

The strong AY KN interaction is responsible for 
the formation of the K–K–p system and this cluster is 
still bound even with a much stronger KK repulsion, 

while the HW potential leads to the bound state with 
energy of only 0.01 MeV relative to the K–p + K–

 
threshold. The mass (binding energy) of the KKK
system slightly depends on the sets of parameters that 
determine KK and KK interactions and the width falls 
into the 41-49 MeV range for all sets of these 
parameters. There is reasonable agreement between 
these results, the mass obtained using separable 
AMY interactions [60] and the variational 
calculation [59]. Our results for the KKK system 
support the conclusion that K (1460) could be 
considered as a dynamically generated resonance. 

Based on the results of our calculations for 
four-particle kaonic systems we also can conclude 
that the pairwise KN interaction plays a major role in 
the formation of the kaonic bound state and the 
effective chiral KN interaction gives relatively 
modest binding for the K–pрт, K–pрр and K–K–pр 
clusters. 

All our calculations with the effective chiral KN
interaction show that the width is always larger than 
the bindingenergy. In some cases the width is more 
than twice as large as the binding energy. Only for 
some four-particle kaonic clusters when the input for 
the KN interaction is the AY potential, the binding 
energy is larger than the width. As a consequence, 
perhaps, we are facing a situation where it is hard to 
identify the resonances which would make the 
experimental observation challenging. 
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