Theoretical and observational constrainhts on the mass-radius relations of neutron stars

  • K. Boshkayev Al-Farabi Kazakh National University, IETP, Department of Physics and Technology, 71 al-Farabi av., 050040 Almaty,
  • J. A. Rueda International Center for Relativistic Astrophysics Network, Piazza della Repubblica 10, Pescara, I-65122
  • M. Muccino International Center for Relativistic Astrophysics Network, Piazza della Repubblica 10, Pescara, I-65122

Аннотация

We investigate theoretical and observational constraints on the mass-radius relations for neutron stars. For that purpose we consider the model of neutron stars taking into considerations strong, weak, electromagnetic and gravitational interactions in the equation of state and integrate the structure equations within the Hartle-Thorne formalism for rotating configurations. On the basis of the theoretical restrictions imposed by general relativity, mass-shedding and axisymmetric secular instabilities we calculate the upper and lower bounds for the parameters of neutron stars. Our theoretical calculations have been compared and contrasted with the observational constraints and as a result we show that the observational constraints favor stiff equations of state. 

Литература

[1] S.L. Shapiro. S.A. Teukolsky. Black holes. white dwarfs. and neutron stars: The physics of compact objects // Wiley–VCH. – 1983. – P. 672.
[2] P. Haensel. A.Y. Potekhin. D.G. Yakovlev. Neutron Stars 1: Equation of State and Structure // New York: Springer. – 2007. – P. 620.
[3] A.Y. Potekhin. – Usp. Fiz. Nauk180. 1279–1304 (2010)
[in Russian]. English translation: Physics–Uspekhi //– 2010. – Vol. 53. – P. 1235. – arXiv:1102.5735v3.
[4] R. Belvedere. D. Pugliese. J.A. Rueda. R. Ruffini. S.–S. XueNeutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions//Nuclear Physics A – 2012. – Vol. 883. – P.1–24.
[5] R. Belvedere. K. Boshkayev. J.A. Rueda. R. Ruffini.Uniformly rotating neutron stars in the global and local charge neutrality cases // – Nuclear Physics A. – 2014. – Vol. 921. – P. 33.
[6] J.B. Hartle.Slowly Rotating Relativistic Stars. I. Equations of Structure // Astrophysical Journal – 1967. – Vol. 150. – P. 1005.
[7] J.B. Hartle. K.S. Thorne. Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars // Astrophysical Journal. – 1968. – Vol. 153. – P. 807.
[8] K. Boshkayev. J.A. Rueda. R. Ruffini. I. Siutsou. On General Relativistic Uniformly Rotating White Dwarfs // The Astrophysical Journal – 2013. – Vol. 762. – P. 117.
[9] K. Boshkayev. R. Ruffini. H. Quevedo. Gravitational field of compact objects in general relativity // Phys. Rev. D– 2012. – Vol. 86.– P. 064043.
[10] E. Berti. F. White. A. Maniopoulou. M. Bruni. Rotating neutron stars: an invariant comparison of approximate and numerical space–time models // Monthly Notices of the Royal Astronomical Society – 2005. – Vol.358.3. – P. 923–938.
[11] J.M. Lattimer. M. Prakash.Neutron Star Structure and the Equation of State // The Astrophysical Journal – 2001. – Vol. 550. – P. 426–442.
[12] J.M. Lattimer. M. Prakash. The Physics of Neutron Stars // Science – 2004. – Vol. 304. – P. 536.
[13] J.M. Lattimer. M. Prakash.Neutron star observations: Prognosis for equation of state constraints // Physics Reports – 2007.– Vol. 442. – P. 109.
[14] J.M. Lattimer. M. PrakashWhat a Two Solar Mass Neutron Star Really Means // International Journal of Modern Physics B – 2010. arXiv:1012.3208v1
[15] J.M. Lattimer. M. Prakash.The equation of state of hot, dense matter and neutron stars // Physics Reports – 2016. – Vol. 621. – P. 127.
[16] C.E. Rhoades. R. Ruffini. P International Journal of Modern Physics B // Phys. Rev. Lett. – 1974. – Vol. 32. – P. 324.
[17] H.A. Bethe. G.E Brown. Observational constraints on the maximum neutron star mass // The Astrophysical Journal. – 1995. – Vol. 445 – P. 129.
[18] V. Kalogera. G. Baym.The Maximum Mass of a Neutron Star // The Astrophysical Journal. – 1996. – Vol.470. – P. 61.
[19] H. Heiselberg. M. Hjorth–Jensen.Phase Transitions in Neutron Stars and MaximumMasses // The Astrophysical Journal. – 1999. – Vol.525. – P. L45.
[20] H.–J. Schulze. A. Polls. A. Ramos. I. Vidana. Maximum mass of neutron stars // Physical Review C. – 2006. – Vol. 73. – P. 058801.
[21] S. Gandolfi. J. Carlson. S. Reddy.Maximum mass and radius of neutron stars, and the nuclear symmetry energy // Physical Review C. – 2012. – Vol.85. – P. 032801.
[22] N. Chamel. P. Haensel. J.L. Zdunik. A.F. Fatina. Onthemaximummass ofneutron // International Journal of Modern Physics E. – 2013. – Vol. 22.– P. 1330018.
[23] A. Bauswein.T. W. Baumgarte. and H.–T. Janka. Prompt Merger Collapse and the Maximum Mass of Neutron Stars// Physical Review Letters. – 2013. – Vol.111. – P. 131101.
[24] N.B. Zhang. B. Qi. S. Y. Wang. S.L. Ge. Keplerian frequency of uniformly rotating neutron stars in relativistic mean field theory // International Journal of Modern Physics E. – 2013. – Vol. 22.– P. 1350085.
[25] G. Martinon. A. Maselli. L. Gualtieri. V.Ferrari. Rotating protoneutron stars: Spin evolution, maximum mass, and I-Love-Q relations // Physical Review D. – 2014. – Vol. 90.– P. 064026.
[26] C. Breu. L. Rezzolla.Maximum mass, moment of inertia and compactness of relativistic stars // MNRAS – 2016. – Vol. 459. – P. 646.
[27] K.A. Maslov. E.E. Kolomeitsev. D.N. Vos-kresensky. Relativistic mean-field models with scaled hadron masses and couplings: Hyperons and maximum neutron star mass // Nuclear Physics A. – 2016. – Vol.950. – P. 64.
[28] Ka-Wai Lo. Lap-Ming Lin. The spin parameter of uniformly rotating compact stars // The Astrophysical Journal – 2011. – Vol. 728. – P. 12.
[29] F. Cipolletta. C. Cherubini. S. Filippi. J.A.Rueda. R. Ruffini. Fast rotating neutron stars with realistic nuclear matter equation of state // Physical Review D. – 2015. – Vol. 92. – P. 023007.
[30] B. Qi. N.B. Zhang. B.Y. Sun. S.Y. Wang. J.H.Gao. A key factor to the spin parameter of uniformly rotating compact stars: crust structure // Research in Astronomy and Astrophysics. – 2014. – Vol. 16. – P. 008.
[31] J.E. Trьmper. Observations of neutron stars and the equation of state of matter at high densities // Prog. Part. Nucl. Phys. – 2011.– Vol. 66. – P. 674.
[32] J. Antoniadis et. al.A Massive Pulsar in a Compact Relativistic Binary // High Energy Astrophysical Phenomena. – 2013. – Vol. 340. – P. 448.
[33] J. Trьmper. V. Burwitz. F. Harberl. V.E.Zavlin. The puzzles of RX J1856.5-3754: neutron star or quark star? // Nucl. Phys. B Proc. Suppl. – 2004. – Vol. 132. – P.560.
[34] C.O. Heinke. G.B. Rybicki. R. Narayan. J.E. Grindlay. A Hydrogen Atmosphere Spectral Model Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae// Astroph. J. – 2006. – Vol. 644. – P. 1090.
[35] J.W.T. Hessels. S.M. Ransom. I.H. Stairs. P.C.C. Freire. V.M. Kaspi. F. Camilo.A radio pulsar spinning at 716 Hz // Science – 2006. – Vol. 311. – P.1901.
[36] D.G. Yakovlev. General relativity and neutron stars // International Journal of Modern Physics A. – 2016. – Vol. 31. – P. 1641017.
[37] L.A. Pachon. J.A. Rueda. C.A. Valenzuela – Toledo. On the relativistic precession and oscillation frequencies of test particles around rapidly rotating compact stars // The Astrophysical Journal. – 2012. – Vol.756. – P. 82.
[38] K. Boshkayev. D. Bini. J. Rueda. A. Geralico. M. Muccino. I. Siutsou.What can we extract fromquasiperiodic oscillations? // Gravitation and Cosmology. – 2014. – Vol. 20. – P. 233.
[39] K. Boshkayev. J. Rueda. M. Muccino. Extracting multipole moments of neutron stars from quasi-periodic oscillations in low mass X-ray binaries // Astronomy Reports – 2015. – Vol. 59. – P. 441.
[40] G. Pappas. Unified description of astrophysical properties of neutron stars independent of the equation of state // Monthly Notices of the Royal Astronomical Society – 2015. – Vol. 454.– P. 4066–4084 (2015).
[41] Z. Stuchlik. M. Urbanec. A. Kotrlova. G.Torok. K. Goluchova. Equations of state in the Hartle-Thorne model of neutron stars selecting acceptable variants of the resonant switch model of twin HF QPOs in the atoll source 4U 1636-53 // Acta Astronomica. – 2015. – Vol. 65.– P.169.
[42] Z. Stuchlik. M. Kolos.Models of quasi-periodic oscillations related to mass and spin of the GRO J1655-40 black hole // Astronomy & Astrophysics. – 2016. – Vol.586. – P. A130.
[43] K. Boshkayev. J. Rueda. M. Muccino. // – eprint arXiv. –1604.02398.
[44] S. Chen. M. Wang. J. Jing. // – eprint arXiv. –1604.07106.
[45] R. Ruffini. M. Muccino. M. Kovacevic. F.G.Oliveira. J.A. Rueda. C.L. Bianco. M. Enderli. A.V.Penacchioni. G.B. Pisani.Y. Wang. E. Zaninoni. GRB 140619b: a short grb from a binary neutron star merger leading to black hole formation// The Astrophysical Journal – 2015. – Vol. 808. – P. 190.
[46] C.L. Fryer. J. A. Rueda. R. Ruffini. Hypercritical accretion, induced gravitational collapse, and binary-driven hypernovae // The Astrophysical JournalLetters – 2014. – Vol. 793. – P. 36.
[47] R. Ruffini. Y. Wang. M. Enderli. M. Muccino. M. Kovacevic. C.L. Bianco. A.V. Penacchioni. G.P.Pisani. J.A. Rueda. GRB 130427a and sn 2013cq: a multi-wavelength analysis of an induced gravitational collapse event // The Astrophysical Journal – 2015. – Vol.798. – P. 10.
Опубликована
2017-03-06
Как цитировать
BOSHKAYEV, K.; RUEDA, J. A.; MUCCINO, M.. Theoretical and observational constrainhts on the mass-radius relations of neutron stars. Журнал, [S.l.], v. 3, n. 1, mar. 2017. ISSN 2409-6121. Доступно на: <http://phst.kaznu.kz/index.php/journal/article/view/89>. Дата доступа: 26 june 2017
Раздел
Theoretical Physics and Astrophysics

Ключевые слова

Neutron stars, equations of state, mass-radius relation, theoretical constraints, observational constraints