Non-rotating and slowly rotating white dwarfs in classical physics
DOI:
https://doi.org/10.26577/2409-6121-2015-2-1-66-71Keywords:
Key words, white dwarfs, uniform rotation, Hartle’s formalism, equilibrium configurations, moment of inertia, quadrupole moment. PACS numbers, 97.10.Cv, 97.10.Kc, 97.10.Nf, 97.10.Pg, 97.20.Rp.Abstract
The equilibrium configurations of uniformly rotating white dwarfs are calculated in the framework of classical physics. The Chandrasekhar and the Salpeter equations of state are used to describe the white dwarf matter. The Hartle formalism is applied to the integration of the equations of hydrostatic equilibrium and field equations. The equations of structure have been expanded in powers of the angular velocity Ω of the white dwarf, and terms of higher order than ΩReferences
[1] V.S. Geroyannis, P.J. Papasotiriou. Spin-up and Spin-down of Rotating Magnetic White Dwarfs: A Straightforward Numerical Approach // ApJ. – 2000. – Vol. 534. – P. 359-366.
[2] S.L. Shapiro, S.A. Teukolsky. Black holes, white dwarfs, and neutron stars: The physics of compact objects. – New York: Wiley-Interscience, 1983. – P. 672.
[3] J.B. Hartle. Slowly Rotating Relativistic Stars. I. Equations of Structure // ApJ. – 1967. – Vol. 150. – P. 1005.
[4] J.B. Hartle, K.S. Thorne. Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars // ApJ. – 1968. – Vol. 153. – P. 807.
[5] N. Stergioulas. Rotating Stars in Relativity // Living Rev. Relativity. – 2003. – Vol. 6. – P. 3.
[6] K. Boshkayev. Non-rotating and slowly rotating stars in classical physics // International Journal of mathematics and physics. – 2014. – Vol. 5. – № 1. – P. 69-80.
[7] G. Meynet, A. Maeder. Stellar evolution with rotation. V. Changes in all the outputs of massive star models // A&A. – 2000. – Vol.361. – P.101-120.
[8] G. Meynet, A. Maeder.Stellar evolution with rotation. X. Wolf-Rayet star populations at solar metallicity // A&A. – 2003. – Vol. 404. – P. 975-990.
[9] S. Ekstrom, G. Meynet, C. Chiappini, R. Hirschi, A. Maeder. Effects of rotation on the evolution of primordial stars // A&A. – 2008. – Vol. 489. – P. 685-698.
[10] S. Chandrasekhar. The Maximum Mass of Ideal White Dwarfs // ApJ. – 1931. – Vol. 74. – P. 81-82.
[11] E.E. Salpeter. Energy and Pressure of a Zero- Temperature Plasma // ApJ. – 1961. – Vol. 134. – P. 669.
[12] S. Chandrasekhar. Introduction to the Study of Stellar Structure. – Chicago: University of Chicago Press, 1939.
[13] M. Rotondo, J.A. Rueda, R. Ruffini, Xue S.-S. Relativistic Thomas-Fermi treatment of compressed atoms and compressed nuclear matter cores of stellar dimensions // Phys. Rev. C. – 2011. – Vol. 83. – P. 045805.
[14] M. Rotondo, J.A. Rueda, R. Ruffini, Xue S.-S. Relativistic Feynman-Metropolis-Teller theory for white dwarfs in general relativity // Phys. Rev. D. – 2011. – Vol. 84. – P. 084007.
[15] J.B. Hartle. Slowly Rotating Relativistic Stars. IX: Moments of Inertia of Rotationally Distorted Stars // Astrophysics and Space Science. – 1973. – Vol. 24. – P. 385-405.
[16] K. Boshkayev, J. Rueda, R. Ruffini, I. Siutsou. On General Relativistic Uniformly Rotating White Dwarfs // ApJ. – 2013. – Vol. 762. – P. 117.
[17] S.O. Kepler, S.J. Kleinman, A. Nitta, D. Koester, B.G. Castanheira, O. Giovannini, A.F.M. Costa, L Althaus. White dwarf mass distribution in the SDSS // Mon. Not. R. Astron. Soc. – 2007. – Vol. 375. – P. 1315-1324.
[18] P.E. Tremblay, P. Bergeron, and A. Gianninas. An Improved Spectroscopic Analysis of Da White Dwarfs from the Sloan Digital Sky Survey Data Release 4 // ApJ. – 2011. – Vol. 730. – P. 128.
[19] K. Boshkayev, J. Rueda, R. Ruffini. On the Maximum Mass of General Relativistic Uniformly Rotating White Dwarfs // International Journal of Modern Physics E. – 2011. – Vol. 20. – P. 136-140.
[20] Boshkayev K., Rueda J., Ruffini R., Siutsou I. General Relativistic and Newtonian White Dwarfs // Proceedings of the MG13 Meeting on General Relativity (in 3 Volumes) /ed. by Rosquist K. et al. – World Scientific Publishing Co. Pte. Ltd. 2015. – P. 2468-2474.
[2] S.L. Shapiro, S.A. Teukolsky. Black holes, white dwarfs, and neutron stars: The physics of compact objects. – New York: Wiley-Interscience, 1983. – P. 672.
[3] J.B. Hartle. Slowly Rotating Relativistic Stars. I. Equations of Structure // ApJ. – 1967. – Vol. 150. – P. 1005.
[4] J.B. Hartle, K.S. Thorne. Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars // ApJ. – 1968. – Vol. 153. – P. 807.
[5] N. Stergioulas. Rotating Stars in Relativity // Living Rev. Relativity. – 2003. – Vol. 6. – P. 3.
[6] K. Boshkayev. Non-rotating and slowly rotating stars in classical physics // International Journal of mathematics and physics. – 2014. – Vol. 5. – № 1. – P. 69-80.
[7] G. Meynet, A. Maeder. Stellar evolution with rotation. V. Changes in all the outputs of massive star models // A&A. – 2000. – Vol.361. – P.101-120.
[8] G. Meynet, A. Maeder.Stellar evolution with rotation. X. Wolf-Rayet star populations at solar metallicity // A&A. – 2003. – Vol. 404. – P. 975-990.
[9] S. Ekstrom, G. Meynet, C. Chiappini, R. Hirschi, A. Maeder. Effects of rotation on the evolution of primordial stars // A&A. – 2008. – Vol. 489. – P. 685-698.
[10] S. Chandrasekhar. The Maximum Mass of Ideal White Dwarfs // ApJ. – 1931. – Vol. 74. – P. 81-82.
[11] E.E. Salpeter. Energy and Pressure of a Zero- Temperature Plasma // ApJ. – 1961. – Vol. 134. – P. 669.
[12] S. Chandrasekhar. Introduction to the Study of Stellar Structure. – Chicago: University of Chicago Press, 1939.
[13] M. Rotondo, J.A. Rueda, R. Ruffini, Xue S.-S. Relativistic Thomas-Fermi treatment of compressed atoms and compressed nuclear matter cores of stellar dimensions // Phys. Rev. C. – 2011. – Vol. 83. – P. 045805.
[14] M. Rotondo, J.A. Rueda, R. Ruffini, Xue S.-S. Relativistic Feynman-Metropolis-Teller theory for white dwarfs in general relativity // Phys. Rev. D. – 2011. – Vol. 84. – P. 084007.
[15] J.B. Hartle. Slowly Rotating Relativistic Stars. IX: Moments of Inertia of Rotationally Distorted Stars // Astrophysics and Space Science. – 1973. – Vol. 24. – P. 385-405.
[16] K. Boshkayev, J. Rueda, R. Ruffini, I. Siutsou. On General Relativistic Uniformly Rotating White Dwarfs // ApJ. – 2013. – Vol. 762. – P. 117.
[17] S.O. Kepler, S.J. Kleinman, A. Nitta, D. Koester, B.G. Castanheira, O. Giovannini, A.F.M. Costa, L Althaus. White dwarf mass distribution in the SDSS // Mon. Not. R. Astron. Soc. – 2007. – Vol. 375. – P. 1315-1324.
[18] P.E. Tremblay, P. Bergeron, and A. Gianninas. An Improved Spectroscopic Analysis of Da White Dwarfs from the Sloan Digital Sky Survey Data Release 4 // ApJ. – 2011. – Vol. 730. – P. 128.
[19] K. Boshkayev, J. Rueda, R. Ruffini. On the Maximum Mass of General Relativistic Uniformly Rotating White Dwarfs // International Journal of Modern Physics E. – 2011. – Vol. 20. – P. 136-140.
[20] Boshkayev K., Rueda J., Ruffini R., Siutsou I. General Relativistic and Newtonian White Dwarfs // Proceedings of the MG13 Meeting on General Relativity (in 3 Volumes) /ed. by Rosquist K. et al. – World Scientific Publishing Co. Pte. Ltd. 2015. – P. 2468-2474.
Downloads
How to Cite
Boshkayev, K., Rueda, J., Ruffini, R., Zhami, B., Kalymova, Z., & Balgimbekov, G. (2016). Non-rotating and slowly rotating white dwarfs in classical physics. Physical Sciences and Technology, 2(1). https://doi.org/10.26577/2409-6121-2015-2-1-66-71
Issue
Section
Theoretical Physics and Astrophysics