Numerical investigation of heat transfer characteristics of pulverized coal in the combustion chambers of the heat energy centers of Kazakhstan

Authors

  • A. Askarova Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • S. Bolegenova Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • Z. Jankoski University of Split, Livanjska 5 21000 Split, Croatia
  • A. Bekmukhamet Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • Sh. Ospanova Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • B. Tolymkanova Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan
  • Zh. Nagashybay Al-Farabi Kazakh National University, IETP, al-Farabi 71, 050040 Almaty, Kazakhstan

DOI:

https://doi.org/10.26577/2409-6121-2015-2-2-33-42
        73 18

Keywords:

Key words, BKZ-420, combustion, Ekibastuz coal, heat and mass transfer, modeling, pulverized coal, turbulence, two– phase flow. PACS numbers, 44.05. e, 44.15. a

Abstract

This article is devoted to the investigation of thermal characteristics of pulverized coal combustion process in the combustion chamber of the boiler BKZ-420. The greatest changes in the temperature distribution observed in the central part of the combustion chamber in the field of the fuel supply and the air fuel mixture are by burner holes. Carrying out the study of thermal characteristics is an important step during the modeling process of heat and mass transfer from the pulverized coal combustion, which allows to determine the temperature field throughout the volume of the combustion chamber and outlet. It has been determined the optimal combustion technology of high-energy fuel and the best structural parameters of the combustion chamber of the boiler BKZ-420 Almaty thermal power station that improve the wear resistance of power and reduce harmful emissions into the atmosphere (temperature decrease of the furnace wall, opposite the burners on the 3000C, ie 17.24% and secondary reduction of carbon monoxide concentration of CO at the outlet from the furnace at 15% carbon dioxide CO2 – 4.65%, and nitrogen dioxide NO2 – 14%).

References

[1] Energy Policies of IEA Countries: 2003 Review International Energy Agency, Dec 15, – 2003. – P. 396.
[2] Statistical Review of World Energy. 2013, Available:http://www.bp.com/content/dam/bp/pdf/statisti calreview/statistical_review_of_world_energy_2013.pdf
[3] J.W. Mitchell, J.M. Tarbell. “A kinetic model of nitric oxide formation during pulverized coal com-bustion” // AIChE Jornal. – 1982. – Vol.28. – P. 302– 320.
[4] R. Leithner, H. Müller. CFD studies for boilers // Second M.I.T. Conference on Computational Fluid and Solid Mechanics. – Cambridge, 2003. – P. 172.
[5] R. Leithner. Numerical Simulation. Computa-tional Fluid Dynamics CFD: Course of Lecture. – Braunschweig, 2006. – P. 52.
[6] H. Müller. Numerische Berechnung dreidimen-sionaler turbulenter Strömungen in Dampferzeugern mit Wärmeübergang und chemischen Reaktionen am Beispiel des SNCR-Verfahrens und der Kohleverbrennung: Fortschritt- Berichte VDI-Verlag. – 1992. – Reiche 6. №268. – P. 158.
[7] D. Moyeda, R. Payne, K.H. Kuehler, E.S. Bish. “Application of CFD for a low-NOx burner retrofit to a coal-fired utility boiler”, Progress Comput., Fluid Dyn. – 2001. – Vol. 1. –P. 91-103.
[8] A. Askarova, Y. Heierle, R. Leithner, H. Müller. “CFD Code Florean for Industrial Boilers Simulations” // WSEAS Transactions on heat and mass transfer. – 2009. – Vol. 4. – Issue 4. – Р. 98-107.
[9] B.E. Launder, D.B. Spalding. “The numerical computation of turbulent flows Comp. Maths” // Appl. Mech. Eng. – 1974.– №3. – Р. 269 – 289.
[10] R. Leithner, H. Müller. “CFD studies for boilers” // Second M.I.T. Conference on Computational Fluid and Solid Mechanic, Cambridge. – 2003. – P. 172.
[11] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. Taylor& Francis. ISBN978-0-89116-522-4. 1980.
[12] F.C. Lockwood, A.D. Gossman. “Incorporation of a Flux Model for Radiation” // XIV International Symposium on Combustion. TheCombustionInstitute. – 1973. – P. 661-671.
[13] A. Askarova, S. Bolegenova, V. Maximov, A. Bekmuhamet, M. Beketayeva. “Numerical experimenting of burning high-ash content Ekibastuz coal in the real boiler of CHP” // International Journal of Mechanics. – 2013. – P. 343-352.
[14] A.S. Askarova, Ye. Lavrichsheva, R. Leithner, H. Müller, A. Magda. “Combustion of low-rank coals in furnaces of Kazakhstan Coal-firing Power Plants” // VDI Berichte. – 2007. – №. 1088. – P. 497-502.
[15] A.S. Askarova, S.A. Bolegenova, V.Yu. Maximov, А. Bekmuhamet, Sh.S. Ospanova. “Numerical research of aerodynamic characteristics of combustion chamber BKZ-75 mining thermal power station” // Journal Procedia Engineering. – 2012. – Vol. 42. – №389 (162). – P. 1250-1259.
[16] V.E. Messerle, A.B. Ustimenko, A.S. Askarova, , A. Nagibin. O Pulverized coal torch combustion in a furnace with plasma-coal system // Thermophysics and Aeromechanics. – 2010. – Vol. 17 (3). – P. 435-444.
[17] B.K. Aliyarov. “Mastering Ekibastuz coal com-bustion in thermal power plants”, Almaty. – 1996. – P. 272.
[18] A. Askarova, S. Bolegenova, V. Maximov, A Bekmuhamet. Mathematical simulation of pulverized coal in combustion chamber // Journal “Procedia Engineering”. – 2012. – Vol. 42. – P. 1150-1156.
[19] A. Askarova, S. Bolegenova, A. Bekmukhamet, Sh. Ospanova, Z Gabitova. "Using 3d modeling technology for investigation of conventional combustion mode of bkz-420-140-7c combustion chamber" // Journal of Engineering and Applied Sciences. – 2014. – Vol. 9. – P. 24-28.
[20] A.S. Askarova, A. Bekmukhamet, S.A. Bolegenova, M.T. Beketayeva, Yu.V. Maximov, Sh.S. Ospanova, Z.K. Gabitova. Investigation of turbulence characteristics of burning process of the solid fuel in BKZ 420 combustion chamber // WSEAS Transactions on Heat & Mass Transfer. – 2014. – P. 39-50.
[21] A.S. Askarova, A. Bekmukhamet, S.A. Bolegenova, M.T. Beketayeva, Yu.V. Maximov, Sh.S. Ospanova, Z.K. Gabitova. Numerical modeling of turbulence characteristics of burning process of the solid fuel in BKZ-420-140-7c combustion chamber // International Journal of Mechanics. – 2014. – Vol. 8 (1). – P. 112-122.
[22] A.S. Askarova, V.E. Messerle, A.B. Ustimenko, S.A. Bolegenova, and V.Yu. Maksimov. Numerical simulation of the coal combustion process initiated by a plasma source // Journal of Thermophysics and Aeromechanics. – 2014. – Vol. 21. – No. 6. – P. 747-75

Downloads

How to Cite

Askarova, A., Bolegenova, S., Jankoski, Z., Bekmukhamet, A., Ospanova, S., Tolymkanova, B., & Nagashybay, Z. (2016). Numerical investigation of heat transfer characteristics of pulverized coal in the combustion chambers of the heat energy centers of Kazakhstan. Physical Sciences and Technology, 2(2). https://doi.org/10.26577/2409-6121-2015-2-2-33-42

Issue

Section

Nuclear Physics and Related Techology