Photodisintegration and Virtual State in the Complex Scaling Method
DOI:
https://doi.org/10.26577/phst-2016-1-87Keywords:
Photodisintegration cross section, 1 1/ 2 state of 9Be, virtual state, cluster model, complex scaling methodAbstract
The photodisintegration cross section observed just above the neutron threshold energy in 9Be is discussed in the framework of an α + α + n three-cluster model and the complex scaling method. The observed cross sections shows a remarkable sharp peak, which has been discussed in association with photo-neutron reactions in nucleo-syntheses of chemical elements. It is discussed that the enhancement of the peak is understood by taking into account a virtual state but not a resonant state. The complex scaling method cannot reproduce an eigenvalue corresponding to the virtual pole, but provides us with a useful tool for investigation of the photodisintegration cross section.
References
[2] F. C. Barker. The Low-energy 9Be(γ, n) 8Be Cross Section // Aust. J. Phys. – 2000. – Vol. 53. – P.247-257.
[3] V. Efros and J. Bang. The first excited states of 9Be and 9B // Eur. Phys. J. A. – 1999. – Vol. 4. – P. 33-39.
[4] V. D. Efros, P. von Neumann-Cosel, and A.Richter. Properties of the first excited state of 9Be derived from (γ,n) and (e,e′) reactions // Phys. Rev. C. – 2014. – Vol. 89. – P. 027301.
[5] K. Arai, P. Descouvemont, D. Baye, and W. N. Catford. Resonance structure of 9Be and 9B in a microscopic cluster model // Phys. Rev. C. – 2003. – Vol.68. – P. 014310.
[6] E. Garrido, D. Fedorov, and A. Jensen. Above threshold s-wave resonances illustrated by the 1/2+ states in 9Be and 9B // Phys. Lett. B. – 2010. – Vol. 684. – P.132-136.
[7] R.Álvarez-Rodr uez, A. S. Jensen, E. Garrido, and D. V. Fedorov. Structure and three-body decay of 9Be resonances // Phys. Rev. C. – 2010. – Vol. 82. – P. 034001.
[8] J. Aguilar and J. M. Combes. A class of analytic perturbations for one-body Schrödinger Hamiltonians // Commun. Math. Phys. – 1971 – Vol. 22. – P. 269-279.
[9] E. Balslev and J. M. Combes. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions // Commun. Math. Phys. – 1971. – Vol. 22. – P. 280-294.
[10] Y. K. Ho. The method of complex coordinate rotation and its applications to atomic collision processes // Phys. Rep. – 1983. – Vol. 99. – P. 1-68.
[11] N. Moiseyev. Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling // Phys. Rep. – 1998. – Vol. 302. – P.211-293.
[12] M. Odsuren, Y. Kikuchi, T. Myo, M. Aikawa, and K. Kat . Virtual-state character of the 9Be 1/2+ state in the 9Be(γ,n) 8Be reaction // Phys. Rev. C. – 2015. – Vol.92. – P. 014322.
[13] Y. Kikuchi, M. Odsuren, T. Myo, and K. Kat. Photodisintegration cross section of 9Be up to 16 MeV in the α + α + n three-body model // Phys. Rev. C. – 2016. – Vol. 93. – P. 054605.
[14] C. W. Arnoldet al. Cross-section measurement of 9Be(γ,n)8Be and implications for α+α+n→9Be in the r process // Phys. Rev. C. – 2012. – Vol. 85. – P. 044605.
[15] H. Utsunomiyaet al. Photodisintegration of 9Be through the 1/2+ state and cluster dipole resonance // Phys. Rev. C. – 2015. – Vol. 92. – P.064323.
[16] H. Utsunomiya et al. Photodisintegration of 9Be with laser-induced Compton backscattered γ rays // Phys. Rev. C. – 2000. – Vol. 63. – P. 018801.
[17] H. A. Bethe. Eementary Nuclear Theory. – John Wiley and Sons, Inc.: New York, 1947, – 148 p.
[18] S. T. Ma. Interpretation of the Virtual Level of the Deuteron // Rev. Mod. Phys. – 1953. – Vol. 25. – P.853-860.
[19] I.J. Thompson, M.V. Zhukov. Effects of 10Li virtual states on the structure of 11Li // Phys. Rev. C. – 1994. – Vol. 49. – P. 1904-1907.
[20] F.C. Barker, G.T. Hickey. Ground-state configurations of 10Li and 11Li // J. Phys. G. – 1977. – Vol. 3. – P. L23.
[21] H. Masui, S. Aoyama, T. Myo, K. Kat, and K.Ikedad. Study of virtual states in 5He and 10Li with the Jost function method // Nucl. Phys. A. – 2000. – Vol. 673. – P. 207-218.
[22] S. E. Wooseley, R. D. Hoffman. The alpha-process and the r-process. // Astrophys. J. – 1992. – Vol. 395. – P. 202-239.
[23] T. Sasaqui, K. T. Kajino, G. Mathews, K. Otsuki, and T. Nakamura. Sensitivity of r-Process Nucleosynthesis to Light-Element Nuclear Reactions // Astrophys. J. – 2005. – Vol. 634. – P. 1173-1189.
[24] S. Aoyama, T. Myo, K. Kat , and K. Ikeda. The Complex Scaling Method for Many-Body Resonances and Its Applications to Three-Body Resonances // Prog. Theor. Phys. – 2006. – Vol. 116. – P. 1-35.
[25] T. Myo, Y. Kikuchi, H. Masui, and K. Kat . Recent development of complex scaling method for many-body resonances and continua in light nuclei // Prog. Part. Nucl. Phys. – 2014. – Vol. 79. – P. 1-56.
[26] S. Saito. Interaction between Clusters and Pauli Principle // Prog. Theor. Phys. – 1969. – Vol. 41. – P.705-722.
[27] H. Kanada, T. Kaneko, S. Nagata, and M.Nomoto. Microscopic Study of Nucleon-4He Scattering and Effective Nuclear Potentials // Prog. Theor. Phys. 1979. – Vol. 61. – 1327-1341.
[28] V. I. Kukulin, V. M. Krasnopol'sky, V. T. Vo-ronchev, and P. B. Sazonov. Detailed study of the cluster structure of light nuclei in a three-body model: (II). The spectrum of low-lying states of nuclei with A = 6 // Nucl. Phys. A. – 1986. – Vol. 453. – P. 365-388.
[29] E. Hiyama, Y. Kino, and M. Kamimura. Gaussian expansion method for few-body systems // Prog. Part. Nucl. Phys. – 2003. – Vol. 51. – P. 223-307.
[30] T. Myo and K. Kat. Sum Rule Values with Respect to Unbound States in the Complex Scaling Method // Prog. Theor. Phys. 1997. – Vol. 98. – P.1275-1287.
[31] T. Myo, K. Kat , H. Toki, and K. Ikeda. Roles of tensor and pairing correlations on halo formation in 11Li // Phys.Rev.C. – 2007. – Vol. 76. – P. 024305.
[32] D. Tilleyet al. Energy levels of light nuclei A=8,9,10 // Nucl. Phys. A. – 2004. – Vol. 745. – P.155-362.
[33] W. Nörtershäuseret al. Nuclear Charge Radii of 7,9,10Be and the One-Neutron Halo Nucleus 11Be // Phys. Rev. Lett. – 2009. – Vol. 102. – P. 062503.
[34] I. I. Tanihataet al. Measurement of interaction cross sections using isotope beams of Be and B and isospin dependence of the nuclear radii // Phys. Lett. B. – 1988. – Vol. 206. – P. 592-596.